Analysis of nanoindentation response of diatom frustules.

J Nanosci Nanotechnol

Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, USA.

Published: December 2007

Diatom frustules have been suggested for numerous nanotechnological applications. Experimental studies using nanoindenter have shown that the hardness and the stiffness of the frustules vary with location of indentation. To gain further insight, a computational framework has been developed where the Berkovich nanoindentation experiments were simulated by a rigid-deformable contact process. Three different approaches that provide progressively increasing level of understanding of the deformation behavior of frustules were adopted. The differences in the mechanical responses of the frustule due to variation of indentation location, size of pores, and distribution of pores were analyzed. It has been found that the effective stiffness of the frustule is linearly related to the porosity level and does not depend on the frustule size or its pore architecture. It has been shown that a 3D porous shell computational model is more appropriate to simulate the experimentally obtained mechanical response of diatom frustules.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2007.904DOI Listing

Publication Analysis

Top Keywords

diatom frustules
12
response diatom
8
frustules
5
analysis nanoindentation
4
nanoindentation response
4
frustules diatom
4
frustules suggested
4
suggested numerous
4
numerous nanotechnological
4
nanotechnological applications
4

Similar Publications

The western Indian continental shelf (eastern Arabian Sea) exhibits contrasting biogeochemical features. This area becomes highly productive due to summer monsoon-driven coastal upwelling in the south and winter monsoon-induced convective mixing in the north. Additionally, in the northern self, the eastern boundary of the Oxygen Minimum Zone (OMZ) persists but is absent in the south.

View Article and Find Full Text PDF

Construction of a high-capacity drug microcarrier using diatom frustules.

Colloids Surf B Biointerfaces

April 2025

School of Life Sciences, Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen 361102, China. Electronic address:

The drug loading capacity is a critical performance metric for drug delivery systems. A high capacity ensures efficient drug delivery to target sites at lower doses, reducing the amount of carrier material needed and lessening patient burden. However, improving drug loading capacity in diatom frustule-based systems remains a challenge.

View Article and Find Full Text PDF

Diatom biosilica for liquid chromatography.

J Chromatogr A

January 2025

Nicolaus Copernicus University in Toruń, Interdisciplinary Centre of Modern Technologies, Wileńska 4, 87-100, Toruń, Poland; Nicolaus Copernicus University in Toruń, Faculty of Chemistry, Department of Environmental Chemistry and Bioanalytics, Gagarina 7, PL-87-100 Toruń, Poland; Prof. Jan Czochralski Kuyavian-Pomeranian Research & Development Centre, Krasińskiego Str. 4, 87-100 Toruń, Poland. Electronic address:

This work presents, for the first time, the preparation method and subsequent use of biosilica in column liquid chromatography in reverse-phase mode. Diatom biosilica consists of the siliceous exoskeletons (frustules) of unicellular algae. Controlled cultivation of Pseudostaurosira trainorii diatoms resulted in frustules with an average diameter of approximately 4 µm, sidewall thickness of 1 µm, and a bottom thickness of 110-150 nm.

View Article and Find Full Text PDF

Dye-contaminated wastewater poses serious environmental risks to ecosystems and human health. Diatoms, algae with nanoporous frustules (cell walls), offer promising potential for wastewater remediation due to their high surface area and adsorption properties. While dead diatom biomass is well-studied for biosorption, research on living diatoms' bioaccumulation and biotransformation potential is limited, with gaps in kinetic and equilibrium modeling of dye adsorption.

View Article and Find Full Text PDF

The benthic pennate diatom Nitzschia navis-varingica, known for producing domoic acid (DA) and its isomers, is widely distributed in the Western Pacific (WP) region. To investigate the genetic differentiation and gene flow patterns among the populations in the WP, the genetic diversity of 354 strains of N. navis-varingica was analysed using two nuclear-encoded rDNA loci: the large subunit rDNA (LSU rDNA) and the internal transcribed spacer 2 (ITS2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!