Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Up to 7.4% (w/w) of the sulfonated polyaniline, poly(2-methoxyaniline-5-sulfonic acid) (PMAS) can be absorbed onto nanostructured calcium silicates. Spectroscopic and leaching studies on the novel PMAS-silicate nanocomposites obtained indicate that attachment of the PMAS occurs via electrostatic binding of PMAS sulfonate groups to Ca2+ sites on the silicates. The surface area and pore volume of the nanocomposites are comparable to those of pure silicate and increase the surface area of the PMAS polymer by several orders of magnitude. The PMAS emeraldine salt in the nanocomposites retains its chemical reactivity, being readily oxidised and reduced to its pernigraniline and leucoemeraldine forms, respectively. The conductivity of the composite is comparable to that of the pure PMAS, several orders of magnitude higher than that of dried nanostructured calcium silicate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2007.879 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!