Objective: To determine whether peroxisome proliferator-activated receptor (PPAR) gamma ligands improve survival of patients with septic shock we treated a mouse model of sepsis [apolipoprotein (Apo) E) knockout mice] with pioglitazone, a PPAR-gamma ligand. ApoE knockout mice have a high mortality rate due to sepsis because the endotoxin is not cleared.
Design And Setting: Prospective study in a university laboratory.
Subjects: We assorted 87 male ApoE knockout mice and 60 wild-type C57/B6 mice randomly into three groups (sepsis, pretreatment, posttreatment).
Interventions: Cecal ligation and puncture (CLP) was carried out in the sepsis and treatment groups. Mice were injected with pioglitazone (5 mg/kg per day) on the day before CLP or 6 h after surgery.
Measurements And Results: Both pre- and post-CLP treatment with pioglitazone improved survival of ApoE knockout and wild-type mice. Serum levels of cytokines and chemokines and myeloperoxidase activity in lung and liver were suppressed in the pioglitazone-treated group. Pioglitazone also suppressed monocyte adhesion to vascular endothelium under flow conditions.
Conclusions: Pioglitazone improved survival of ApoE knockout mice after onset of septic shock through suppression of inflammatory responses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00134-008-1024-9 | DOI Listing |
J Biochem Mol Toxicol
January 2025
Department of Cardiothoracic Surgery, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou City, Hubei Province, China.
Abdominal aortic aneurysm (AAA) is a severe cardiovascular disease (CVD) that is partly attributable to endothelial dysfunction, inflammatory response, and angiogenesis. G protein-coupled receptor 4 (GPR4), a proton-sensitive G protein-coupled receptor that is abundantly expressed in vascular endothelial cells, has been associated with numerous physiological functions. Nevertheless, its potential involvement in the development of AAA remains unexplored.
View Article and Find Full Text PDFClin Transl Med
January 2025
Allergy Center, Department of Otolaryngology, Affiliated Eye and ENT Hospital, Fudan University, Shanghai, China.
Background: House dust mite (HDM) is the leading allergen for allergic rhinitis (AR). Although allergic sensitisation by inhaled allergens renders susceptible individuals prone to developing AR, the molecular mechanisms driving this process remain incompletely elucidated.
Objective: This study aimed to elucidate the molecular mechanisms underlying HDM-induced AR.
Mol Ther
January 2025
Moderna, Inc., Cambridge, MA, USA 02142. Electronic address:
Ornithine transcarbamylase deficiency (OTCD) is the most common urea cycle disorder, characterized by hyperammonemia and accompanied by a high unmet patient need. mRNA therapies have been shown to be efficacious in hypomorphic Sparse-fur abnormal skin and hair (Spf-ash) mice, a model of late-onset disease. However, studying the efficacy of ornithine transcarbamylase (OTC) mRNA therapy in traditional knockout mice, a model for severe early-onset OTCD, is hampered by the rapid lethality of the model, and poor lipid nanoparticle (LNP) uptake into neonatal mouse liver.
View Article and Find Full Text PDFMol Ther
January 2025
School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Chinese Institute for Brain Research, Beijing 102206, China. Electronic address:
The development of efficient and targeted methods for delivering DNA in vivo has long been a major focus of research. In this study, we introduce a gene Delivery approach Admitted by small Metabolites, named gDAM, for the efficient and targeted delivery of naked DNA into astrocytes in the adult brains of mice. gDAM utilizes a straightforward combination of DNA and small metabolites, including glycine, L-proline, L-serine, L-histidine, D-alanine, Gly-Gly, and Gly-Gly-Gly, to achieve astrocyte-specific delivery of naked DNA, resulting in transient and robust gene expression in these cells.
View Article and Find Full Text PDFNat Commun
January 2025
NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
Reactive oxygen species exacerbate nonalcoholic steatohepatitis (NASH) by oxidizing macromolecules; yet how they promote NASH remains poorly understood. Here, we show that peroxidase activity of global hepatic peroxiredoxin (PRDX) is significantly decreased in NASH, and palmitic acid (PA) binds to PRDX1 and inhibits its peroxidase activity. Using three genetic models, we demonstrate that hepatic PRDX1 protects against NASH in male mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!