Glutamate is an excitatory neurotransmitter that binds to the kainate receptor, the N-methyl-D-aspartate (NMDA) receptor, and the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPAR). Each receptor was first characterized and cloned in the central nervous system (CNS). Glutamate is also present in the periphery, and glutamate receptors have been identified in nonneuronal tissues, including bone, heart, kidney, pancreas, and platelets. Platelets play a central role in normal thrombosis and hemostasis, as well as contributing greatly to diseases such as stroke and myocardial infarction. Despite the presence of glutamate in platelet granules, the role of glutamate during hemostasis is unknown. We now show that activated platelets release glutamate, that platelets express AMPAR subunits, and that glutamate increases agonist-induced platelet activation. Furthermore, we demonstrate that glutamate binding to the AMPAR increases intracellular sodium concentration and depolarizes platelets, which are important steps in platelet activation. In contrast, platelets treated with the AMPAR antagonist CNQX or platelets derived from GluR1 knockout mice are resistant to AMPA effects. Importantly, mice lacking GluR1 have a prolonged time to thrombosis in vivo. Our data identify glutamate as a regulator of platelet activation, and suggest that the AMPA receptor is a novel antithrombotic target.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2275381PMC
http://dx.doi.org/10.1084/jem.20071474DOI Listing

Publication Analysis

Top Keywords

platelet activation
16
ampa receptor
12
glutamate
10
activation ampa
8
platelets
7
receptor
6
platelet
5
glutamate mediates
4
mediates platelet
4
activation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!