The parameters of the prior, the hyperparameters, play an important role in Bayesian image estimation. Of particular importance for the case of Gibbs priors is the global hyperparameter, beta, which multiplies the Hamiltonian. Here we consider maximum likelihood (ML) estimation of beta from incomplete data, i.e., problems in which the image, which is drawn from a Gibbs prior, is observed indirectly through some degradation or blurring process. Important applications include image restoration and image reconstruction from projections. Exact ML estimation of beta from incomplete data is intractable for most image processing. Here we present an approximate ML estimator that is computed simultaneously with a maximum a posteriori (MAP) image estimate. The algorithm is based on a mean field approximation technique through which multidimensional Gibbs distributions are approximated by a separable function equal to a product of one-dimensional (1-D) densities. We show how this approach can be used to simplify the ML estimation problem. We also show how the Gibbs-Bogoliubov-Feynman (GBF) bound can be used to optimize the approximation for a restricted class of problems. We present the results of a Monte Carlo study that examines the bias and variance of this estimator when applied to image restoration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/83.585235 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!