Mechanisms that control abnormal CD4(+) T cell-mediated tissue damage are a significant factor in averting and resolving chronic inflammatory epithelial diseases. B cells can promote such immunoregulation, and this is thought to involve interaction with MHC II- or CD1-restricted regulatory T cells. The purpose of this study is to genetically define the interacting cells targeted by protective B cells, and to elucidate their regulatory mechanisms in CD4(+) T cell inflammation. Transfer of G alpha i2-/- CD3(+) T cells into lymphopenic mice causes a dose-dependent multi-organ inflammatory disease including the skin, intestine, and lungs. Disease activity is associated with elevated levels of serum TNF-alpha and IFN-gamma, and an activated IL-17 producing CD4(+) T cell population. Mesenteric node B cells from wild type mice suppress disease activity, serum cytokine expression, and levels of CD4(+) T cells producing TNF-alpha IFN-gamma, and IL-17. The protective function of B cells requires genetic sufficiency of IL-10, MHC I and TAP1. Regulatory B cells induce the expansion and activation of CD8(+) T cells, which is correlated with disease protection. These results demonstrate that CD8(+) T cells can ameliorate lymphopenic systemic inflammatory disease, through peptide/MHC I-dependent B cell interaction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2478703PMC
http://dx.doi.org/10.1016/j.clim.2008.01.001DOI Listing

Publication Analysis

Top Keywords

cells
11
regulatory cells
8
cd4+ cell
8
inflammatory disease
8
disease activity
8
tnf-alpha ifn-gamma
8
cd8+ cells
8
disease
5
integration cells
4
cells cd8+
4

Similar Publications

Cell-cell crosstalk in the pathogenesis of acute lung injury and acute respiratory distress syndrome.

Tissue Barriers

January 2025

Sepsis Translational Medicine Key Laboratory of Hunan Province, Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, PR China.

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are the result of an exaggerated inflammatory response triggered by a variety of pulmonary and systemic insults. The lung tissues are comprised of a variety of cell types, including alveolar epithelial cells, pulmonary vascular endothelial cells, macrophages, neutrophils, and others. There is mounting evidence that these diverse cell populations within the lung interact to regulate lung inflammation in response to both direct and indirect stimuli.

View Article and Find Full Text PDF

Gestational diabetes mellitus (GDM) is a metabolic disorder that arises during pregnancy and heightens the risk of placental dysplasia. Ginsenoside Re (Re) may stabilize insulin and glucagon to regulate glucose levels, which may improve diabetes-associated diseases. This study aims to investigate the mechanism of Re in high glucose (HG)-induced apoptosis of trophoblasts through endoplasmic reticulum stress (ERS)-related protein CHOP/GADD153.

View Article and Find Full Text PDF

Gymnostachyum febrifugum, a less-known ethnomedicinal plant from the Western Ghats of India, is used to treat various diseases and serves as an antioxidant and antibacterial herb. The present study aims to profile the cytotoxic phytochemicals in G. febrifugum roots using GC-MS/MS, in vitro confirmation of cytotoxic potential against breast cancer and an in silico study to understand the mechanism of action.

View Article and Find Full Text PDF

Nucleotide-binding oligomerization domain protein 1 (NOD1) is one of the innate immune receptors that has been associated with tumorigenesis and abnormally expressed in various cancers. However, the role of NOD1 in Glioblastoma Multiforme (GBM) has not been investigated. We used the Tumor Immune Estimate Resource (TIMER) database to compare the differential expression of NOD1 in various tumors.

View Article and Find Full Text PDF

Stroke is the second-leading global cause of death. The damage attributed to the immune storm triggered by ischemia-reperfusion injury (IRI) post-stroke is substantial. However, data on the transcriptomic dynamics of pyroptosis in IRI are limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!