The kynurenine pathway of tryptophan metabolism converts the amino acid tryptophan into a number of biologically active metabolites. The first and rate-limiting step in this pathway is the conversion of tryptophan to N-formylkynurenine and until recently this reaction was thought to be performed by either of two enzymes, tryptophan 2,3-dioxygenase and indoleamine 2,3-dioxygenase. A third enzyme, indoleamine 2,3-dioxygenase-2, indoleamine 2,3-dioxygenase-like protein or proto-indoleamine 2,3-dioxygenase (IDO2, IDO-2, INDOL1 or proto-IDO), with this activity recently has been described. The gene encoding IDO2 is adjacent and structurally similar to the indoleamine 2,3-dioxygenase gene and both mouse genes use multiple promoters to express transcripts with alternate 5' exons. The IDO2 protein is expressed in the murine kidney, liver, male and female reproductive system. The two IDO enzymes can utilise a similar range of substrates, however they differ in their selectivity for some inhibitors. The selective inhibition of IDO2 by 1-methyl-D-tryptophan suggests that IDO2 activity may have a role in the inhibition of immune responses to tumours.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biocel.2008.01.005 | DOI Listing |
Front Biosci (Landmark Ed)
December 2024
Department of Pathology, The First Affiliated Hospital of Soochow University, 215123 Suzhou, Jiangsu, China.
Background: Psoriasis is a chronic and incurable skin inflammation driven by an abnormal immune response. Our study aims to investigate the potential of interferon-γ (IFN-γ) primed mesenchymal stem cells (IMSCs) in targeting T cells to attenuate psoriasis-like inflammation, and to elucidate the underlying molecular mechanism involved.
Methods: Mesenchymal stem cells (MSCs) were isolated from the umbilical cord and identified based on their surface markers.
J Funct Biomater
December 2024
Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
CY1-4, 9-nitropyridine [2',3':4,5] pyrimido [1,2-α] indole -5,11- dione, is an indoleamine 2,3-dioxygenase (IDO) inhibitor and a poorly water-soluble substance. It is very important to increase the solubility of CY1-4 to improve its bioavailability and therapeutic effect. In this study, the mesoporous silica nano-skeleton carrier material Sylysia was selected as the carrier to load CY1-4, and then the CY1-4 nano-skeleton drug delivery system (MSNM@CY1-4) was prepared by coating the hydrophilic polymer material Hydroxypropyl methylcellulose (HPMC) and the lipid material Distearoylphosphatidyl-ethanolamine-poly(ethylene glycol) (DSPE-PEG) to improve the anti-tumor effect of CY1-4.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Chemistry, University of Georgia, Athens, GA 30602. Electronic address:
Pyrrolnitrin, a potent antifungal compound originally discovered in Pseudomonas strains, is biosynthesized through a secondary metabolic pathway involving four key enzymes. Central to this process is PrnB, a heme enzyme that catalyzes the complex transformation of 7-Cl-L-tryptophan. Despite its structural similarity to indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) and its classification within the histidine-ligated heme-dependent aromatic oxygenase (HDAO) superfamily, PrnB has remained relatively unexplored due to challenges in reconstituting its in vitro activity.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Westlake University, Chemistry, 18 Shilongshan Road, 310024, Hangzhou, CHINA.
Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors are promising for treating tumors but have limited efficacy due to the immunosuppressive tumor microenvironment. In this study, we develop an orchestrated nanoparticle system using modular peptide assemblies, where the co-assembled sequences are designed for the specific binding to the hydrophobic and hydrophilic domains, guiding the assembly process and enabling the customization of nanoparticle properties. We exploit the modularity of this platform to integrate a hydrophobic ferroptosis precursor, an IDO1 inhibitor, and a hydrophilic peptidic PD-L1 antagonist for optimizing therapeutic outcomes through ferroptosis-enhanced tumor immunotherapy.
View Article and Find Full Text PDFCell Mol Life Sci
December 2024
Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
Background: Glioblastoma (GB) is the stage IV of glioma and mesenchymal GB represents the most common and malignant subtype characterized with elevated expression of a mesenchymal marker YKL-40 and resistance to immune drug therapy. Here, we determined if YKL-40 regulates kynurenine (Kyn) pathway (KP) metabolism that contributes to establishing an immune suppressive microenvironment in GB.
Methods: Tumor cells expressing YKL-40 from GB patients were isolated and activated cellular metabolisms were identified via gene microarray analysis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!