The role of the epigenetic signal, DNA methylation, in gene regulation during erythroid development.

Curr Top Dev Biol

Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, USA.

Published: April 2008

The sequence complexity of the known vertebrate genomes alone is insufficient to account for the diversity between individuals of a species. Although our knowledge of vertebrate biology has evolved substantially with the growing compilation of sequenced genomes, understanding the temporal and spatial regulation of genes remains fundamental to fully exploiting this information. The importance of epigenetic factors in gene regulation was first hypothesized decades ago when biologists posited that methylation of DNA could heritably alter gene expression [Holliday and Pugh, 1975. Science 187(4173), 226-232; Riggs, 1975. Cytogenet. and Cell Genet.14(1), 9-25; Scarano et al., 1967. Proc. Natl. Acad. Sci. USA 57(5), 1394-1400)]. It was subsequently shown that vertebrate DNA methylation, almost exclusively at the 5' position of cytosine in the dinucleotide CpG, played a role in a number of processes including embryonic development, genetic imprinting, cell differentiation, and tumorigenesis. At the time of this writing, a large and growing list of genes is known to exhibit DNA methylation-dependent regulation, and we understand in some detail the mechanisms employed by cells in using methylation as a regulatory modality. In this context, we revisit one of the original systems in which the role of DNA methylation in vertebrate gene regulation during development was described and studied: erythroid cells. We briefly review the recent advances in our understanding of DNA methylation and, in particular, its regulatory role in red blood cells during differentiation and development. We also address DNA methylation as a component of erythroid chromatin architecture, and the interdependence of CpG methylation and histone modification.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0070-2153(07)00004-XDOI Listing

Publication Analysis

Top Keywords

dna methylation
20
gene regulation
12
methylation
8
methylation regulatory
8
dna
7
regulation
5
role
4
role epigenetic
4
epigenetic signal
4
signal dna
4

Similar Publications

Plant architecture greatly contributes to grain yield, but the epigenetic regulation of plant architecture remains elusive. Here, we identified the maize (Zea mays L.) mutant plant architecture 1 (par1), which shows reduced plant height, shorter and narrower leaves, and larger leaf angles than the wild type.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a malignant tumour that poses a serious threat to human health and places a heavy burden on individuals and society. However, the role of GPC1 in the malignant progression of HCC is unknown. In this study, we analysed the expression of GPC1 in HCC, and its association with poor patient prognosis.

View Article and Find Full Text PDF

The shift toward a histo-molecular approach in World Health Organization classification of central nervous system tumors (WHO CNS5) emphasizes the critical role of molecular testing, such as next-generation sequencing (NGS) and DNA methylation profiling, for accurate diagnosis. However, implementing these advanced techniques is particularly challenging in resource-constrained countries. To address this, the Asian Oceanian Society of Neuropathology committee for Adapting Diagnostic Approaches for Practical Taxonomy in Resource-Restrained Regions (AOSNP-ADAPTR) was initiated to help pathologists in resource-limited regions to implement WHO CNS5 diagnoses using simpler diagnostic tools, mainly immunohistochemistry.

View Article and Find Full Text PDF

Harnessing Nanomaterials for Next-Generation DNA Methylation Biosensors.

Small

January 2025

Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.

DNA methylation is an epigenetic mechanism that regulates gene expression and is implicated in diseases such as cancer and atherosclerosis. However, traditional clinical methods for detecting DNA methylation often lack sensitivity and specificity, making early diagnosis challenging. Nanomaterials offer a solution with their unique properties, enabling highly sensitive photochemical and electrochemical detection techniques.

View Article and Find Full Text PDF

Objectives: The association between leisure-time physical activity (LTPA) and a lower risk of mortality is susceptible to bias from multiple sources. We investigated the potential of biological ageing to mediate the association between long-term LTPA and mortality and whether the methods used to account for reverse causality affect the interpretation of this association.

Methods: Study participants were twins from the older Finnish Twin Cohort (n = 22,750; 18-50 years at baseline).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!