The objective was to identify the trajectories of onset of memory and other cognitive loss in persons destined to develop mild cognitive impairment (MCI) or dementia. Healthy, community dwelling, cognitively intact elders (n = 156, mean age at entry = 83 years) were examined annually for an average of greater than 7 years. Those who developed at least two consecutive Clinical Dementia Ratings >or= 0.5 were classified as having MCI. Longitudinal mixed effects models with a change point were used to model the aging process in those with and without an MCI diagnosis during follow-up and to model the rate of change relative to the age of onset of MCI. MCI had a preclinical stage of accelerated cognitive loss that was observed 3 to 4 years before the diagnosis of MCI on tests of verbal memory, animal fluency, and visuospatial constructions. Evidence from memory performance before the change point suggests that a slow decline in memory precedes the period of accelerated decline in the development of MCI. Aging transitions leading to MCI and dementia are characterized by unique linear and nonlinear cognitive changes in several domains that precede the diagnosis of MCI and dementia by at least several years.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S1355617708080375 | DOI Listing |
Sensors (Basel)
December 2024
Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA.
Alzheimer's disease (AD) and Alzheimer's Related Dementias (ADRD) are projected to affect 50 million people globally in the coming decades. Clinical research suggests that Mild Cognitive Impairment (MCI), a precursor to dementia, offers a critical window of opportunity for lifestyle interventions to delay or prevent the progression of AD/ADRD. Previous research indicates that lifestyle changes, including increased physical exercise, reduced caloric intake, and mentally stimulating activities, can reduce the risk of MCI.
View Article and Find Full Text PDFBrain Sci
December 2024
School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA.
Background: Cognitive impairment poses a significant global health challenge, emphasizing the critical need for early detection and intervention. Traditional diagnostics like neuroimaging and clinical evaluations are often subjective, costly, and inaccessible, especially in resource-poor settings. Previous research has focused on speech analysis primarily conducted using English data, leaving multilingual settings unexplored.
View Article and Find Full Text PDFBiomolecules
December 2024
Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73117, USA.
Mild cognitive impairment (MCI) affects nearly 20% of older adults worldwide, with no targetable interventions for prevention. COVID-19 adversely affects cognition, with >70% of older adults with Long COVID presenting with cognitive complaints. Neurovascular coupling (NVC), an essential mechanism of cognitive function, declines with aging and is further attenuated in neurocognitive disorders.
View Article and Find Full Text PDFEClinicalMedicine
August 2024
Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, United Kingdom.
Background: Predicting dementia early has major implications for clinical management and patient outcomes. Yet, we still lack sensitive tools for stratifying patients early, resulting in patients being undiagnosed or wrongly diagnosed. Despite rapid expansion in machine learning models for dementia prediction, limited model interpretability and generalizability impede translation to the clinic.
View Article and Find Full Text PDFAnn Neurol
January 2025
Department of Neurology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.
Objective: The Clarity AD phase III trial showed that lecanemab reduced amyloid markers in early Alzheimer's disease (AD) and resulted in less decline on measures of cognition and function than placebo. Herein, we aimed to characterize amyloid-β (Aβ) protofibril (PF) captured by lecanemab in human cerebrospinal fluid (CSF) from living participants with different stages in AD, which enable an enhanced understanding of the dynamic changes of lecanemab-associated Aβ-PF (Lec-PF) in vivo.
Methods: We newly developed a unique and highly sensitive immunoassay method using lecanemab that selectively captures Lec-PF.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!