Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1432-2277.2008.00655.xDOI Listing

Publication Analysis

Top Keywords

inhibition mtor
4
mtor sirolimus
4
sirolimus induces
4
induces remission
4
remission post-transplant
4
post-transplant lymphoproliferative
4
lymphoproliferative disorders
4
inhibition
1
sirolimus
1
induces
1

Similar Publications

mTORC1 regulates the pyrimidine salvage pathway by controlling UCK2 turnover via the CTLH-WDR26 E3 ligase.

Cell Rep

January 2025

Department of Pharmacology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA; Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Tri-Institutional PhD Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA. Electronic address:

One critical aspect of cell proliferation is increased nucleotide synthesis, including pyrimidines. Pyrimidines are synthesized through de novo and salvage pathways. Prior studies established that the mammalian target of rapamycin complex 1 (mTORC1) promotes pyrimidine synthesis by activating the de novo pathway for cell proliferation.

View Article and Find Full Text PDF

Background And Aim: The high rate of tumor growth results in an increased need for amino acids. As solute carriers (SLC) transporters are capable of transporting different amino acids, cancer may develop as a result of these transporters' over-expression due to their complex formation with other biological molecules. Therefore, this review investigated the role of SLC transporters in the progression of cancer.

View Article and Find Full Text PDF

Adiponectin (ADN) regulates DNA synthesis, cell apoptosis and cell cycle to participate in the pathology and progression of glioblastoma. The present study aimed to further explore the effect of ADN on temozolomide (TMZ) resistance in glioblastoma and the underlying mechanism of action. Glioblastoma cell lines (U251 and U87-MG cells) were treated with ADN and TMZ at different concentrations; subsequently, 3.

View Article and Find Full Text PDF

GNG2 inhibits brain metastases from colorectal cancer via PI3K/AKT/mTOR signaling pathway.

Sci Rep

January 2025

Department of Gastrointestinal Surgery, Third Xiangya Hospital, Central South University, Changsha, 410006, China.

G-protein gamma subunit 2 (GNG2) plays a vital role in various cellular processes, yet its specific function in colorectal cancer (CRC), particularly in highly invasive cases and brain metastasis, remains unclear. This study identifies GNG2 as a key regulator in metastatic colorectal cancer (mCRC) through bioinformatics analysis and experimental validation. Functional enrichment analyses reveal that GNG2 is related to the PI3K/AKT/mTOR signaling pathway and cell cycle regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!