The extent and nature of epistatic interactions between mutations are issues of fundamental importance in evolutionary biology. However, they are difficult to study and their influence on adaptation remains poorly understood. Here, we use a systems-level approach to examine epistatic interactions that arose during the evolution of Escherichia coli in a defined environment. We used expression arrays to compare the effect on global patterns of gene expression of deleting a central regulatory gene, crp. Effects were measured in two lineages that had independently evolved for 20,000 generations and in their common ancestor. We found that deleting crp had a much more dramatic effect on the expression profile of the two evolved lines than on the ancestor. Because the sequence of the crp gene was unchanged during evolution, these differences indicate epistatic interactions between crp and mutations at other loci that accumulated during evolution. Moreover, a striking degree of parallelism was observed between the two independently evolved lines; 115 genes that were not crp-dependent in the ancestor became dependent on crp in both evolved lines. An analysis of changes in crp dependence of well-characterized regulons identified a number of regulatory genes as candidates for harboring beneficial mutations that could account for these parallel expression changes. Mutations within three of these genes have previously been found and shown to contribute to fitness. Overall, these findings indicate that epistasis has been important in the adaptive evolution of these lines, and they provide new insight into the types of genetic changes through which epistasis can evolve. More generally, we demonstrate that expression profiles can be profitably used to investigate epistatic interactions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2242816 | PMC |
http://dx.doi.org/10.1371/journal.pgen.0040035 | DOI Listing |
Plant Sci
January 2025
Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran.
Rice yield strongly depends on panicle size and architecture but the genetics underlying these traits and their coordination with environmental cues through various signaling pathways have remained elusive. A genome-wide association study (GWAS) was performed to pinpoint the underlying genetic determinants for rice panicle architecture by analyzing 20 panicle-related traits using a data set consisting of 44,100 SNPs. We defined QTL windows around significant SNPs by the rate of LD decay for each chromosome and used these windows to identify putative candidate genes associated with the trait.
View Article and Find Full Text PDFJ Genet Genomics
January 2025
Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China. Electronic address:
Several quantitative trait genes (QTGs) related to rice heading date, a key factor for crop development and yield, have been identified, along with complex interactions among genes. However, a comprehensive genetic interaction network for these QTGs has not yet been established. In this study, we use 18K-rice lines to identify QTGs and their epistatic interactions affecting rice heading date.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Physics and Astronomy, University of California, Los Angeles, CA 90095.
The course of evolution is strongly shaped by interaction between mutations. Such epistasis can yield rugged sequence-function maps and constrain the availability of adaptive paths. While theoretical intuition is often built on global statistics of large, homogeneous model landscapes, mutagenesis measurements necessarily probe a limited neighborhood of a reference genotype.
View Article and Find Full Text PDFmLife
December 2024
State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology Shanghai Jiao Tong University Shanghai China.
Nat Commun
December 2024
Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland.
Transcription factor binding sites (TFBSs) are important sources of evolutionary innovations. Understanding how evolution navigates the sequence space of such sites can be achieved by mapping TFBS adaptive landscapes. In such a landscape, an individual location corresponds to a TFBS bound by a transcription factor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!