A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hydration free energy of a Model Lennard-Jones solute particle: microscopic Monte Carlo simulation studies, and interpretation based on mesoscopic models. | LitMetric

In this study, the hydration of a model Lennard-Jones solute particle and the analytical approximations of the free energy of hydration as functions of solute microscopic parameters are analyzed. The control parameters of the solute particle are the charge, the Lennard-Jones diameter, and also the potential well depth. The obtained multivariate free energy functions of hydration were parametrized based on Metropolis Monte Carlo simulations in the extended NpT ensemble, and interpreted based on mesoscopic solvation models proposed by Gallicchio and Levy [J. Comput. Chem. 25, 479 (2004)], and Wagoner and Baker [Proc. Natl. Acad. Sci. U.S.A. 103, 8331 (2006)]. Regarding the charge and the solute diameter, the dependence of the free energy on these parameters is in qualitative agreement with former studies. The role of the third parameter, the potential well depth not previously considered, appeared to be significant for sufficiently precise bivariate solvation free energy fits. The free energy fits for cations and neutral solute particles were merged, resulting in a compact manifold of the free energy of solvation. The free energy of hydration for anions forms two separate manifolds, which most likely results from an abrupt change of the coordination number when changing the size of the anion particle.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2828192DOI Listing

Publication Analysis

Top Keywords

free energy
32
solute particle
12
energy
8
model lennard-jones
8
lennard-jones solute
8
monte carlo
8
based mesoscopic
8
energy hydration
8
potential well
8
well depth
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!