Malignant solid tumors remain a significant clinical challenge, necessitating innovative therapeutic approaches. Oncolytic viral therapy is a nonmutagenic, biological anticancer therapeutic shown to be effective against human cancer in early studies. Because matrix metalloproteinases (MMP) play important roles in the pathogenesis and progression of cancer, we sought to determine if "arming" an oncolytic herpes simplex virus (oHSV) with an MMP-antagonizing transgene would increase virus-mediated antitumor efficacy. We generated oHSVs that express human tissue inhibitor of metalloproteinases 3 (TIMP3) or firefly luciferase and designated them rQT3 and rQLuc, respectively. We evaluated the antitumor efficacy of these viruses against neuroblastoma and malignant peripheral nerve sheath tumor (MPNST) xenografts. Relative to rQLuc, rQT3-infected primary human MPNST and neuroblastoma cells exhibited equivalent virus replication but increased cytotoxicity and reduced MMP activity. In vivo, rQT3-treated tumors showed delayed tumor growth, increased peak levels of infectious virus, immature collagen extracellular matrix, and reduced tumor vascular density. Remarkably, rQT3 treatment reduced circulating endothelial progenitors, suggesting virus-mediated antivasculogenesis. We conclude that rQT3 enhanced antitumor efficacy through multiple mechanisms, including direct cytotoxicity, elevated virus titer, and reduced tumor neovascularization. These findings support the further development of combined TIMP-3 and oncolytic virotherapy for cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855837 | PMC |
http://dx.doi.org/10.1158/0008-5472.CAN-07-2734 | DOI Listing |
Mol Cancer Ther
January 2025
Indian Institute of Technology Madras, Madras, TN, India.
Most of the triple negative phenotype or basal-like molecular subtypes of breast cancers are associated with aggressive clinical behaviour and show poor disease prognosis. Current treatment options are constrained, emphasizing the need for novel combinatorial therapies for this particular tumor subtype. Our group has demonstrated that functionally active p21 activated kinase 1 (PAK1) exhibits significantly higher expression levels in clinical triple negative breast cancer (TNBC) samples compared to other subtypes, as well as adjacent normal tissues.
View Article and Find Full Text PDFAm J Cancer Res
December 2024
Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine (VCOM) Monroe, LA 71203, USA.
Prostate cancer (PCa) is the second leading cause of cancer-related deaths among American men. The development of metastatic castration resistant PCa (mCRPC) is the current clinical challenge. Antiandrogens such as Enzalutamide (ENZ) are commonly used for CRPC treatment.
View Article and Find Full Text PDFAm J Cancer Res
December 2024
Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University Providence, RI 02903, USA.
Androgen receptor (AR) signaling is a target in prostate cancer therapy and can be treated with non-steroidal anti-androgens (NSAA) including enzalutamide, and apalutamide for patients with advanced disease. Metastatic castration-resistant prostate cancer (mCPRC) develop resistance becomes refractory to therapy limiting patient overall survival. Darolutamide is a novel next-generation androgen receptor-signaling inhibitor that is FDA approved for non-metastatic castration resistant prostate cancer (nmCRPC).
View Article and Find Full Text PDFAm J Cancer Res
December 2024
Hangzhou DAC Biotechnology Co., Ltd. No. 369 Qiaoxin Road, Qiantang District, Hangzhou 310018, Zhejiang, China.
Gastric cancer is a common malignant tumor with high incidence and mortality. The overexpression of Human epidermal growth factor receptor 2 (HER2) is associated with increased metastatic potential and poor clinical outcome in gastric cancer. Despite the proven clinical response rates of approved HER2-targeted therapies, including Trastuzumab combined with chemotherapy, their limited long-term clinical benefits and inevitable disease progression still pose significant challenges to the clinical treatment of gastric cancer.
View Article and Find Full Text PDFUnlabelled: SHP1 (PTPN6) and SHP2 (PTPN11) are closely related protein-tyrosine phosphatases (PTPs), which are autoinhibited until their SH2 domains bind paired tyrosine-phosphorylated immunoreceptor tyrosine-based inhibitory/switch motifs (ITIMs/ITSMs). These PTPs bind overlapping sets of ITIM/ITSM-bearing proteins, suggesting that they might have some redundant functions. By studying T cell-specific single and double knockout mice, we found that SHP1 and SHP2 redundantly restrain naïve T cell differentiation to effector and central memory phenotypes, with SHP1 playing the dominant role.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!