A method that may be used for identifying the dynamic characteristics of the measuring canal of a device for studying the respiratory parameters is described. The device is equipped with a flow-metering primary transducer of variable pressure differential and a semiconductor pressure transformer of the PDP-10 or PDP-12 types according to the reaction towards graded action. The results of the computation of dynamic errors that may occur in measuring the main parameters of forced expiration by devices of such design are analyzed.

Download full-text PDF

Source

Publication Analysis

Top Keywords

dynamic errors
8
measuring main
8
respiratory parameters
8
variable pressure
8
pressure differential
8
study dynamic
4
errors measuring
4
main respiratory
4
parameters devices
4
devices fitted
4

Similar Publications

Adaptive weighted progressive iterative approximation based on coordinate decomposition.

PLoS One

January 2025

School of Mathematics and Finance, Hunan University of Humanities, Science and Technology, Loudi, China.

During the iterative process of the progressive iterative approximation, it is necessary to calculate the difference between the current interpolation curve and the corresponding data points, known as the adjustment vector. To achieve more precise adjustments of control points, this paper decomposes the adjustment vector into its coordinate components and introduces a weight for each component. By dynamically adjusting these weights, we can accelerate the convergence of iterations and enhance approximation accuracy.

View Article and Find Full Text PDF

Nowadays, spaceborne LiDAR technology, particularly ICESat-2, has become a transformative tool in marine environmental research. Unlike traditional passive optical remote sensing methods, ICESat-2 offers detailed vertical structure mapping of oceanic optical properties. Despite the potential of ICESat-2 for observing the optical vertical structure, its application in the East China Sea with complex hydrological conditions and dynamic ecosystems remains limited.

View Article and Find Full Text PDF

Digital quantum simulation of cosmological particle creation with IBM quantum computers.

Sci Rep

January 2025

Departamento de Física Teórica, Universidad Autónoma de Madrid, 28049, Madrid, Spain.

We use digital quantum computing to simulate the creation of particles in a dynamic spacetime. We consider a system consisting of a minimally coupled massive quantum scalar field in a spacetime undergoing homogeneous and isotropic expansion, transitioning from one stationary state to another through a brief inflationary period. We simulate two vibration modes, positive and negative for a given field momentum, by devising a quantum circuit that implements the time evolution.

View Article and Find Full Text PDF

On latent dynamics learning in nonlinear reduced order modeling.

Neural Netw

January 2025

MOX, Department of Mathematics, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, 20133, Italy. Electronic address:

In this work, we present the novel mathematical framework of latent dynamics models (LDMs) for reduced order modeling of parameterized nonlinear time-dependent PDEs. Our framework casts this latter task as a nonlinear dimensionality reduction problem, while constraining the latent state to evolve accordingly to an unknown dynamical system. A time-continuous setting is employed to derive error and stability estimates for the LDM approximation of the full order model (FOM) solution.

View Article and Find Full Text PDF

Musculoskeletal modeling based on inverse dynamics provides a cost-effective non-invasive means for calculating intersegmental joint reaction forces and moments, solely relying on kinematic data, easily obtained from smart wearables. On the other hand, the accuracy and precision of such models strongly hinge upon the selected scaling methodology tailored to subject-specific data. This study investigates the impact of upper body mass distribution on internal and external kinetics computed using a comprehensive musculoskeletal model during level walking in both normal weight and obese individuals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!