Neural stem/progenitor cells residing in the mammalian CNS provide a potential endogenous source for replenishing neurons that are lost due to aging, trauma or disease. However, little is known about their functional potential due to the lack of methodologies that allow for the reproducible alteration of stem cell numbers in vivo. Accordingly, we describe a methodology that utilizes targeted X-irradiation to experimentally generate neural stem/progenitor cell-depleted rat models. We show that, by virtue of their mitotic activity, proliferating neural stem/progenitor cells can be selectively eliminated from either the subventricular zone (SVZ) or dentate gyrus of a rat by treating it to an (unilateral or bilateral) exposure of X-irradiation. Utilizing BrdU incorporation, it was found that a single 15 gray (Gy) exposure to the SVZ resulted in the elimination of 85% of the proliferating cell population for up to 3 months. Immunohistochemistry, ultrastructural analysis and proteomics were employed to confirm that the cells eliminated following X-irradiation were neural stem/progenitor cells. Similar depletions of the stem/progenitor cell population in the dentate gyrus were achieved by targeting the hippocampus with a single 15Gy exposure. The reproducibility, versatility and ease of generation make these experimental animal models a valuable tool to aid in our understanding of the properties and functions of neural stem/progenitor cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3282581 | PMC |
http://dx.doi.org/10.1016/j.jneumeth.2007.12.012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!