The usefulness of selected biorelevant dissolution media (BDM) to predict in vivo drug absorption was studied. Dissolution profiles of solid formulations of a poorly soluble model compound were compared in BDM simulating fasted and two levels of fed state. A non-physiologically relevant medium containing the cationic surfactant, cetrimide, was also investigated. All the media studied were capable of differentiating between the formulations employed, with formulation A consistently ranking high and formulations C and D ranking low. An in vivo dog study was carried out and an attempt was made to obtain a level A correlation between the plasma absorption curves and in vitro dissolution curves, using non-linear regression software. The in vitro-in vivo correlation (IVIVC) models developed indicated that fed state media (BDM 3) containing high levels of both bile salts (BS) and lipolysis products (LP) were best able to predict in vivo pharmacokinetic parameters (Cmax and AUC) with prediction errors lower than 10%. Overall, design and use of appropriate media for in vitro dissolution is extremely important. This study demonstrates the potential of physiologically relevant media containing both BS and LP for use in formulation and early drug development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2007.12.013DOI Listing

Publication Analysis

Top Keywords

biorelevant dissolution
8
model compound
8
media bdm
8
predict vivo
8
fed state
8
vitro dissolution
8
media
5
dissolution ivivc
4
ivivc solid
4
solid dosage
4

Similar Publications

Advantages of the refined Developability Classification System (rDCS) in early discovery.

J Pharm Sci

December 2024

Janssen Research & Development, LLC, Discovery Pharmaceutics, San Diego, CA, USA.

Rat pharmacokinetic studies are commonly utilized in early discovery to support absorption, distribution, metabolism, and excretion optimization of active pharmaceutical ingredients (APIs). The aim of this work was to compare exposures from fit-for-purpose oral suspension and solution formulations in rats to guidance provided by the refined Developability Classification System (rDCS) with respect to identifying potential limits to oral absorption, formulation strategy selection, and to optimize oral bioavailability (BA). This investigation utilized six diverse APIs covering a large range of biorelevant solubility, metabolic stability, and oral BA in rats.

View Article and Find Full Text PDF

For compendial dissolution testing of solid dosage forms, media volumes of 500 to 900 mL are used in apparatus I and II to ensure sink conditions. However, these volumes are considerably larger than those in the gastrointestinal tract. Thus, the experiments are not biomimetic and possibly not suitable for biopredictive dissolution testing.

View Article and Find Full Text PDF

A slight variation in in vivo exposure for tacrolimus extended-release (ER) capsules, which have a narrow therapeutic index (NTI), significantly affects the pharmacodynamics of the drug. Generic drug bioequivalence (BE) standards are stricter, necessitating accurate assessment of the rate and extent of drug release. Therefore, an in vitro dissolution method with high in vivo predictive power is crucial for developing generic drugs.

View Article and Find Full Text PDF

Pimozide and Adipic Acid: A New Multicomponent Crystalline Entity for Improved Pharmaceutical Behavior.

Molecules

November 2024

Department of Chemistry, Physical Chemistry Section & C.S.G.I. (Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase), University of Pavia, Via Taramelli 16, 27100 Pavia, Italy.

Pimozide is a first-generation antipsychotic used in the treatment of schizophrenia, Gilles de la Tourette syndrome, and other chronic psychoses. Its in vivo efficacy is limited by poor solubility and consequent poor bioavailability. Therefore, adipic acid was used as a coformer for the preparation of a binary product with improved pharmaceutical properties.

View Article and Find Full Text PDF

Abiraterone acetate (ABTA) is used as a primary treatment for metastatic castration-resistant prostate cancer. Its low aqueous solubility results in inadequate dissolution and poor oral bioavailability (<10%), necessitating the consumption of large doses of ABTA (1000 mg per day) for desired efficacy. The aim of this study is to enhance the solubility, dissolution, and bioavailability of ABTA through amorphous solid dispersions (SDs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!