The activated leukocyte cell adhesion molecule [ALCAM/CD166/melanoma metastasis clone D (MEMD)] is an immunoglobulin superfamily cell adhesion molecule. It is expressed developmentally in cells of all 3 embryonic lineages. The ALCAM expression is limited to subsets of cells in most adult tissues. ALCAM is localized at intercellular junctions in epithelium presumably as part of the adhesive complex that maintains tissue architecture. Over the past decade, alterations in expression of ALCAM have been reported in several human tumors (melanoma, prostate cancer, breast cancer, colorectal carcinoma, bladder cancer, and esophageal squamous cell carcinoma). This review summarizes the current knowledge of the role of ALCAM in malignancies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.trsl.2007.09.006 | DOI Listing |
Commun Biol
January 2025
Division of Immunology, Tulane National Primate Research Center, Tulane University, Covington, LA, USA.
The Bartonella genus of bacteria encompasses ubiquitous species, some of which are pathogenic in humans and animals. Bartonella henselae, the causative agent of Cat Scratch disease, is responsible for a large portion of human Bartonella infections. These bacteria can grow outside of cells, replicate in erythrocytes and invade endothelial and monocytic cells.
View Article and Find Full Text PDFNat Commun
January 2025
Biophysics Graduate Group, University of California, Davis, CA, USA.
P-cadherin, a crucial cell-cell adhesion protein which is overexpressed in numerous malignant cancers, is a popular target for drug delivery antibodies. However, molecular guidelines for engineering antibodies that can be internalized upon binding to P-cadherin are unknown. Here, we use a combination of biophysical, biochemical, and cell biological methods to demonstrate that trapping the P-cadherin extracellular region in an X-dimer adhesive conformation triggers cadherin endocytosis via an outside-in signaling mechanism.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmaceutics, College of Pharmacy, King Saud University, PO Box 2457, Riyadh, 11451, Saudi Arabia.
Prostate cancer presents a major health issue, with its progression influenced by intricate molecular factors. Notably, the interplay between miRNAs and changes in transcriptomic patterns is not fully understood. Our study seeks to bridge this knowledge gap, employing computational techniques to explore how miRNAs and transcriptomic alterations jointly regulate the development of prostate cancer.
View Article and Find Full Text PDFBiochem Genet
January 2025
Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
Although DNA methyltransferase 1 (DNMT1) and RNA editor ADAR triplications exist in Down syndrome (DS), their specific roles remain unclear. DNMT methylates DNA, yielding S-adenosine homocysteine (SAH), subsequently converted to homocysteine (Hcy) and adenosine by S-adenosine homocysteine (Hcy) hydrolase (SAHH). ADAR converts adenosine to inosine and uric acid.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Bone Joint, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, 256600, China.
This study examines the biocompatibility, osteogenic potential, and effectiveness of polyether ether ketone (PEEK) composites for treating osteonecrosis, seeking to establish a theoretical basis for clinical application. A range of PEEK composite materials, including sulfonated polyether ether ketone (SPEEK), polydopamine-sulfonated polyether ether ketone (SPEEK-PDA), bone-forming peptide-poly-dopamine-sulfonated polyether ether ketone (SPEEK-PDA-BFP), and vascular endothelial growth factor-poly-dopamine-sulfonated polyether ether ketone (SPEEK-PDA-VEGF), were constructed by concentrated sulfuric acid sulfonation, polydopamine modification and grafting of bioactive factors. The experiments involved adult male New Zealand rabbits aged 24-28 weeks and weighing 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!