Clostridial spores as live 'Trojan horse' vectors for cancer gene therapy: comparison with viral delivery systems.

Genet Vaccines Ther

Department of Medicine, University of Queensland, Prince Charles Hospital, Brisbane, Queensland, 4032, Australia.

Published: February 2008

Solid tumours account for 90% of all cancers. Gene therapy represents a potential new modality for their treatment. Up to now, several approaches have been developed, but the most efficient ones are the viral vector based gene therapy systems. However, viral vectors suffer from several deficiencies: firstly most vectors currently in use require intratumoural injection to elicit an effect. This is far from ideal as many tumours are inaccessible and many may have already spread to other parts of the body, making them difficult to locate and inject gene therapy vectors into. Second, because of cell heterogeneity within a given cancer, the vectors do not efficiently enter and kill every cancer cell. Third, hypoxia, a prevalent characteristic feature of most solid tumours, reduces the ability of the viral vectors to function and decreases viral gene expression and production. Consequently, a proportion of the tumour is left unaffected, from which tumour regrowth occurs. Thus, cancer gene therapy has yet to realise its full potential. The facultative or obligate anaerobic bacteria have been shown to selectively colonise and regerminate in solid tumours when delivered systemically. Among them, the clostridial spores were easy to produce, stable to store and safe to use as well as having extensive oncolytic ability. However, research in animals and humans has shown that oncolysis was almost always interrupted sharply at the outer rim of the viable tumour tissue where the blood supply was sufficient. These clostridial spores, though, could serve as "Trojan horse" for cancer gene therapy. Indeed, various spores harbouring genes for cancerstatic factors, prodrug enzymes, or proteins or cytokines had endowed with additional tumour-killing capability. Furthermore, combination of these "Trojan horses" with conventional chemotherapy or radiation therapies often significantly perform better, resulting in the "cure" of solid tumours in a high percentage of animals. It is, thus, not too difficult to predict the potential outcomes for the use of clostridial spores as "Trojan horse" vectors for oncolytic therapy when compared with viral vector-mediated cancer therapy for it be replication-deficient or competent. However, to move the "Trojan horse" to a clinic, though, additional requirements need to be satisfied (i) target tumours only and not anywhere else, and (ii) be able to completely kill primary tumours as well as metastases. Current technologies are in place to achieve these goals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2267465PMC
http://dx.doi.org/10.1186/1479-0556-6-8DOI Listing

Publication Analysis

Top Keywords

gene therapy
24
clostridial spores
16
solid tumours
16
cancer gene
12
"trojan horse"
12
therapy
8
viral vectors
8
vectors
7
gene
7
tumours
7

Similar Publications

Systemic Diseases in Patients with Congenital Aniridia: A Report from the Homburg Registry for Congenital Aniridia.

Ophthalmol Ther

January 2025

Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany.

Introduction: Congenital aniridia is increasingly recognized as part of a complex syndrome with numerous ocular developmental anomalies and non-ocular systemic manifestations. This requires comprehensive care and treatment of affected patients. Our purpose was to analyze systemic diseases in patients with congenital aniridia within the Homburg Aniridia Registry.

View Article and Find Full Text PDF

Circular RNAs in cancer: roles, mechanisms, and therapeutic potential across colorectal, gastric, liver, and lung carcinomas.

Discov Oncol

January 2025

Department of Bioscience and Biotechnology, Banasthali Vidyapith, Niwai-Tonk, Rajasthan, 304022, India.

The prominence of circular RNAs (circRNAs) has surged in cancer research due to their distinctive properties and impact on cancer development. This review delves into the role of circRNAs in four key cancer types: colorectal cancer (CRC), gastric cancer (GC), liver cancer (HCC), and lung cancer (LUAD). The focus lies on their potential as cancer biomarkers and drug targets.

View Article and Find Full Text PDF

Vitamin D status and its determinants in German elite athletes.

Eur J Appl Physiol

January 2025

Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus Liebig University Giessen, Kugelberg 62, 35394, Giessen, Germany.

Purpose: This study investigated elite German athletes to (1) assess their serum 25(OH)D levels and the prevalence of insufficiency, (2) identify key factors influencing serum 25(OH)D levels, and (3) analyze the association between serum 25(OH)D levels and handgrip strength.

Methods: In this cross-sectional study, a total of 474 athletes (231 female), aged 13-39 years (mean 19.3 years), from ten Olympic disciplines were included.

View Article and Find Full Text PDF

Profiling of pathogenic variants in Japanese patients with sarcoglycanopathy.

Orphanet J Rare Dis

January 2025

Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.

Background: Sarcoglycanopathies (SGPs) are limb-girdle muscular dystrophies (LGMDs) that can be classified into four types, LGMDR3, LGMDR4, LGMDR5, and LGMDR6, caused by mutations in the genes, SGCA, SGCB, SGCG, and SGCD, respectively. SGPs are relatively rare in Japan. This study aims to profile the genetic variants that cause SGPs in Japanese patients.

View Article and Find Full Text PDF

In the past decades, Chimeric Antigen Receptor (CAR)-T cell therapy has achieved remarkable success, leading to the approval of six therapeutic products for haematological malignancies. Recently, the therapeutic potential of this therapy has also been demonstrated in non-tumoral diseases. Currently, the manufacturing process to produce clinical-grade CAR-T cells is complex, time-consuming, and highly expensive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!