Objective: To investigate the primary pharmacology of fesoterodine (a novel antimuscarinic drug developed for treating overactive bladder) and SPM 7605 (its active metabolite, considered to be the main pharmacologically active principle of fesoterodine in man) against human muscarinic receptor subtypes, and to investigate in vitro and in vivo functional activity of these agents on the rat bladder compared with existing standard agents.
Materials And Methods: The displacement of radioligand binding by fesoterodine, SPM 7605 and standard agents in membrane preparations of Chinese hamster ovary (CHO) cells expressing the different human muscarinic receptors (M1-M5) was characterized. Agonistic and antagonistic activities were studied using different CHO cell lines stably expressing the human recombinant muscarinic receptor subtypes. The effects of fesoterodine and SPM 7605 on isolated bladder strips contracted by carbachol or electrical field stimulation (EFS) were investigated. In vivo the effects of fesoterodine and SPM 7605 on micturition variables were assessed using continuous cystometry in conscious female Sprague-Dawley rats, and compared to those of oxybutynin and atropine.
Results: In vitro SPM 7605 potently inhibited radioligand binding at all five human muscarinic receptor subtypes with equal affinity across all five. Fesoterodine had a similar balanced selectivity profile but was less potent than SPM 7605. Both substances were competitive antagonists of cholinergic agonist-stimulated responses in human M1-M5 cell lines and had a similar potency and selectivity profile to the radioligand-binding studies. In rat bladder strips, fesoterodine and SPM 7605 caused a rightward shift of the concentration-response curve for carbachol with no depression of the maximum, and concentration-dependently reduced contractions induced by EFS. The potency of both drugs was similar to that of atropine and oxybutynin. In the presence of the esterase inhibitor neostigmine, the concentration-response curve of fesoterodine was shifted to the right, suggesting that part of the activity was caused by metabolism to SPM 7605 by tissue enzymes. In vivo, low doses (0.01 mg/kg) of fesoterodine and SPM 7605 reduced micturition pressure and increased intercontraction intervals and bladder capacity, but did not affect residual volume.
Conclusions: Fesoterodine and its active metabolite, SPM 7605, are nonsubtype selective, competitive antagonists of human muscarinic receptors, but SPM 7605 has greater potency than the parent compound. Pharmacodynamic studies in the rat bladder in vitro confirm the competitive muscarinic antagonist profile of these agents in a native tissue preparation, and in vivo studies in the rat showed effects on bladder function consistent with a muscarinic antagonist profile.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1464-410X.2007.07358.x | DOI Listing |
Nat Hum Behav
December 2024
Department of Psychology, University of Cambridge, Cambridge, UK.
Replications are important for assessing the reliability of published findings. However, they are costly, and it is infeasible to replicate everything. Accurate, fast, lower-cost alternatives such as eliciting predictions could accelerate assessment for rapid policy implementation in a crisis and help guide a more efficient allocation of scarce replication resources.
View Article and Find Full Text PDFUpdates Surg
October 2023
Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
Colorectal cancer (CRC) survival rates continue to improve, but the risk of developing a second primary malignancy (SPM) has also increased. The most common type of SPM observed after CRC is lung cancer. In this study, we explored the prognostic factors and clinical management decisions of patients with second primary lung cancer after colorectal cancer (SPLC-CRC).
View Article and Find Full Text PDFBJU Int
July 2010
Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC, USA.
Objective: To evaluate the urodynamic effects of fesoterodine, a new antimuscarinic agent, alone and combined with doxazosin, in a rat model of partial urethral obstruction (PUO), as 35-83% of men with bladder outlet obstruction (BOO) secondary to benign prostatic hyperplasia (BPH) have overactive bladder (OAB) syndrome, and as the combination of alpha(1)-adrenoceptor- and muscarinic-receptor antagonists has been proposed to be beneficial for these patients.
Materials And Methods: Thirty-seven male Sprague-Dawley rats (250 g) had surgically induced PUO; 2 weeks later they were evaluated by cystometry with no anaesthesia or any restraint. After a 1-h period either 5-hydroxymethyl tolterodine (5-HMT, the active metabolite of fesoterodine, previously known as SPM 7605), doxazosin or a combination of both, was given intravenously (0.
BJU Int
April 2008
Department of Pharmacology/Toxicology, Schwarz BioSciences GmbH, Monheim, Germany.
Objective: To investigate the primary pharmacology of fesoterodine (a novel antimuscarinic drug developed for treating overactive bladder) and SPM 7605 (its active metabolite, considered to be the main pharmacologically active principle of fesoterodine in man) against human muscarinic receptor subtypes, and to investigate in vitro and in vivo functional activity of these agents on the rat bladder compared with existing standard agents.
Materials And Methods: The displacement of radioligand binding by fesoterodine, SPM 7605 and standard agents in membrane preparations of Chinese hamster ovary (CHO) cells expressing the different human muscarinic receptors (M1-M5) was characterized. Agonistic and antagonistic activities were studied using different CHO cell lines stably expressing the human recombinant muscarinic receptor subtypes.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!