Parkinson's disease: genetic versus toxin-induced rodent models.

FEBS J

 Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.

Published: April 2008

Parkinson's disease (PD), a common progressive neurodegenerative disorder, is characterized by degeneration of dopamine neurons in the substantia nigra and neuronal proteinaceous aggregates called Lewy bodies (LBs). The etiology of PD is probably a combination of environmental and genetic factors. Recent progress in molecular genetics has identified several genes causing PD, including alpha-synuclein, leucine-rich repeat kinase 2 (LRRK2), Parkin, DJ-1 and PTEN-induced kinase 1 (PINK1), many of them coding for proteins found in LBs and/or implicated in mitochondrial function. However, the mechanism(s) leading to the development of the disease have not been identified, despite intensive research. Animal models help us to obtain insights into the mechanisms of several symptoms of PD, allowing us to investigate new therapeutic strategies and, in addition, provide an indispensable tool for basic research. As PD does not arise spontaneously in animals, characteristic and specific functional changes have to be induced by administration of toxins or by genetic manipulations. This review will focus on the comparison of three types of rodent animal models used to study different aspects of PD: (a) animal models using neurotoxins; (b) genetically modified mouse models reproducing findings from PD linkage studies or based on ablation of genes necessary for the development and survival of dopamine neurons; and (c) tissue-specific knockouts in mice targeting dopamine neurons. The advantages and disadvantages of these models are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1742-4658.2008.06302.xDOI Listing

Publication Analysis

Top Keywords

dopamine neurons
12
animal models
12
parkinson's disease
8
models
6
disease genetic
4
genetic versus
4
versus toxin-induced
4
toxin-induced rodent
4
rodent models
4
models parkinson's
4

Similar Publications

Oppositional and competitive instigation of hippocampal synaptic plasticity by the VTA and locus coeruleus.

Proc Natl Acad Sci U S A

January 2025

Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum 44780, Germany.

The novelty, saliency, and valency of ongoing experiences potently influence the firing rate of the ventral tegmental area (VTA) and the locus coeruleus (LC). Associative experience, in turn, is recorded into memory by means of hippocampal synaptic plasticity that is regulated by noradrenaline sourced from the LC, and dopamine, sourced from both the VTA and LC. Two persistent forms of synaptic plasticity, long-term potentiation (LTP), and long-term depression (LTD) support the encoding of different kinds of spatial experience.

View Article and Find Full Text PDF

Background: Parkinson's disease (PD) is one of the most common neurodegenerative disorders. Previous research has confirmed that isofraxidin can reduce macrophage expression and inhibit peripheral inflammation. However, its effects on the central nervous system remain underexplored.

View Article and Find Full Text PDF

Postpartum depression (PPD) affects up to 20% of new mothers and has adverse consequences for the well-being of both mother and child. Exposure to stress during pregnancy as well as dysregulation in the mesolimbic dopamine (DA) reward system and its upstream modulator oxytocin (OT) have been independently linked to PPD. However, no studies have directly examined DA or OT signaling in the postpartum brain after gestational stress.

View Article and Find Full Text PDF

The dysfunction of dopaminergic (DA) neurons is central to Parkinson's disease. Distinct synaptic vesicle (SV) populations, differing in neurotransmitter content (dopamine vs. glutamate), may vary due to differences in trafficking and exocytosis.

View Article and Find Full Text PDF

Deficiency of histamine H receptors in parvalbumin-positive neurons leads to hyperactivity, impulsivity, and impaired attention.

Neuron

January 2025

Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China. Electronic address:

Attention deficit hyperactivity disorder (ADHD), affecting 4% of the population, is characterized by inattention, hyperactivity, and impulsivity; however, its neurophysiological mechanisms remain unclear. Here, we discovered that deficiency of histamine H receptor (HR) in parvalbumin-positive neurons in substantia nigra pars recticulata (PV) attenuates PV neuronal activity and induces hyperactivity, impulsivity, and inattention in mice. Moreover, decreased HR expression was observed in PV in patients with ADHD symptoms and dopamine-transporter-deficient mice, whose behavioral phenotypes were alleviated by HR agonist treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!