Parietal area V6A contains neurons modulated by the direction of gaze as well as neurons able to code the direction of arm movement. The present study was aimed to disentangle the gaze effect from the effect of reaching activity upon single V6A neurons. To this purpose, we used a visuomotor task in which the direction of arm movement remained constant while the animal changed the direction of gaze. Gaze direction modulated reach-related activity in about two-thirds of tested neurons. In several cases, modulations were not due to the eye-position signal per se, the apparent eye-position modulation being just an epiphenomenon. The real modulating factor was the location of reaching target with respect to the point gazed by the animal, that is, the retinotopic coordinates towards which the action of reaching occurred. Comparison of neural discharge of the same cell during execution of foveated and non-foveated reaching movements, performed towards the same or different spatial locations, confirmed that in a part of V6A neurons reaching activity is coded retinocentrically. In other neurons, reaching activity is coded spatially, depending on the direction of reaching movement regardless of where the animal was looking at. The majority of V6A reaching neurons use a system that encompasses both of these reference frames. These results are in line with the view of a progressive visuomotor transformation in the dorsal visual stream, that changes the frame of reference from the retinocentric one, typically used by the visual system, to the arm-centred one, typically used by the motor system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2268963 | PMC |
http://dx.doi.org/10.1111/j.1460-9568.2008.06021.x | DOI Listing |
Swiss Med Wkly
January 2025
Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland.
Aims: We aimed to explore atrial fibrillation (AF)-induced productivity losses in working-age atrial fibrillation patients and to estimate atrial fibrillation-related indirect costs.
Methods: Between 2014 and 2017, the Swiss Atrial Fibrillation prospective cohort study (Swiss-AF) enrolled 217 working-age patients with documented atrial fibrillation. Self-reported changes in professional activity and the reasons thereof were descriptively analysed over 8 years of follow-up or until patients reached the retirement age.
Front Immunol
January 2025
Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
Background: The emergence of novel SARS-CoV-2 variants challenges immunity, particularly among immunocompromised kidney transplant recipients (KTRs). To address this, vaccines have been adjusted to circulating variants. Despite intensive vaccination efforts, SARS-CoV-2 infections surged among KTRs during the Omicron wave, enabling a direct comparison of variant-specific immunity following-vaccination against Omicron BA.
View Article and Find Full Text PDFThis paper breaks away from traditional approaches that merely emulate digital neural networks. Using Mach-Zehnder interferometer (MZI) networks as a case study, we explore the impact of the inherent properties of analog computation on performance and identify the characteristics that optical neural networks (ONNs) components should possess to better adapt to these specific properties. Specifically, we examine the influence of analog computation on bias power and activation functions, as well as the impact of optical pruning on ONN's performance.
View Article and Find Full Text PDFDual-parameter temperature and humidity sensors based on optical fiber sensing have wide applications. Among various optical fiber sensors, surface plasmon resonance (SPR) sensors exhibit excellent sensing sensitivity. To address the bandwidth issue and expand the sensitivity, this paper proposes a multimode fiber-no core fiber (MMF-NCF) SPR sensor.
View Article and Find Full Text PDFLight trapping structures can enhance the absorption and reduce the thickness and costs of solar cells. Among light trapping structures, the metasurface structure utilizes Mie scattering to make light enter the solar active layer better, thus improving the photovoltaic conversion efficiency of solar cells. Herein, we simulated and optimized a metasurface light-trapping structure for solar cells and implemented this structure on solar cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!