Recently, using the medial forebrain bundle (MFB) 6-hydroxydopmaine (6-OHDA) lesion rat model of Parkinson's disease (PD), we have demonstrated that blockade of central IGF-1 receptors (IGF-1R) attenuated estrogen neuroprotection of substantia nigra pars compacta (SNpc) DA neurons, but exacerbated 6-OHDA lesions in IGF-1 only treated rats (Quesada and Micevych [2004]: J Neurosci Res 75:107-116). This suggested that the IGF-1 system is a central mechanism through which estrogen acts to protect the nigrostriatal DA system. Moreover, these results also suggest that IGF-1R-induced intracellular signaling pathways are involved in the estrogen mechanism that promotes neuronal survival. In vitro, two convergent intracellular signaling pathways used by estrogen and IGF-1, the mitogen-activated protein kinase (MAPK/ERK), and phosphatidyl-inositol-3-kinase/Akt (PI3K/Akt), have been demonstrated to be neuroprotective. Continuous central infusions of MAPK/ERK and PI3K/Akt inhibitors were used to test the hypothesis that one or both of these signal transduction pathways mediates estrogen and/or IGF-1 neuroprotection of SNpc DA neurons after a unilateral administration of 6-OHDA into the MFB of rats. Motor behavior tests and tyrosine hydroxylase immunoreactivity revealed that the inhibitor of the PI3K/Akt pathway (LY294002) blocked the survival effects of both estrogen and IGF-1, while an inhibitor of the MAPK/ERK signaling (PD98059) was ineffective. Western blot analyses showed that estrogen and IGF-1 treatments increased PI3K/Akt activation in the SN; however, MAPK/ERK activation was decreased in the SN. Indeed, continuous infusions of inhibitors blocked phosphorylation of PI3K/Akt and MAPK/ERK. These findings indicate that estrogen and IGF-1-mediated SNpc DA neuronal protection is dependent on PI3K/Akt signaling, but not on the MAPK/ERK pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2667142PMC
http://dx.doi.org/10.1002/dneu.20609DOI Listing

Publication Analysis

Top Keywords

estrogen igf-1
16
estrogen
9
mediates estrogen
8
igf-1
8
rat model
8
model parkinson's
8
parkinson's disease
8
snpc neurons
8
intracellular signaling
8
signaling pathways
8

Similar Publications

Background: Higher concentration of insulin-like growth factor-1 (IGF-1) increases postmenopausal breast cancer risk, but evidence for insulin and c-peptide is limited. Further, not all studies have accounted for potential confounding by biomarkers from other biological pathways, and not all were restricted to estrogen receptor (ER)-positive breast cancer.

Methods: This was a case-cohort study of 1,223 postmenopausal women (347 with ER-positive breast cancer) from the Melbourne Collaborative Cohort Study.

View Article and Find Full Text PDF

Endometrial cancer (EC) is a common gynaecological malignancy associated with metabolic dysfunctions such as obesity, diabetes and insulin resistance, as well as hormonal imbalances, particularly involving oestrogen and progesterone. These factors disrupt normal cellular metabolism, heightening the risk of developing endometrioid EC (EEC), the most prevalent subtype of EC. The insulin-like growth factor-1 (IGF1) pathway, a key regulator of growth, metabolism, and organ function, is implicated in EC progression.

View Article and Find Full Text PDF

Objective: To report a patient with McCune-Albright syndrome (MAS) with bilateral ovarian involvement who had achieved a pregnancy through in vitro fertilization (IVF).

Design: Case report.

Setting: Academic fertility center.

View Article and Find Full Text PDF

Early puberty is associated with improved long-term reproductive performance. Predicting who will achieve early puberty is limited to intensive, invasive serial blood collections for measurement of reproductive hormones. The vaginal genome during pubertal development has potential as biomarkers of early estrus in the pre-pubertal period.

View Article and Find Full Text PDF

The number of beef × dairy animals entering feedlots has increased, but the response of beef × dairy cattle to growth-promoting implants has not been well characterized. The objective of this study was to evaluate the effects of breed type and implant administration on live performance, carcass characteristics, sera metabolites, and immunohistochemical (IHC) outcomes. Forty-eight steers (average body weight [BW] = 417±22 kg) were sorted by breed into groups of predominantly Angus (B), black-hided beef × primarily Holstein (B×D), or Holstein (D), and half of the steers within each breed type were administered a steroidal implant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!