Enteric glia.

Glia

Department of Anatomy and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York 10032.

Published: June 1991

The structure of the enteric nervous system (ENS) is different from that of extraenteric peripheral nerve. Collagen is excluded from the enteric plexuses and support for neuronal elements is provided by astrocyte-like enteric glial cells. Enteric glia differ from Schwann cells in that they do not form basal laminae and they ensheath axons, not individually, but in groups. Although enteric glia are rich in the S-100 and glial fibrillary acidic proteins, it has been difficult to find a single chemical marker that distinguishes enteric glia from non-myelinating Schwann cells. Nevertheless, two monoclonal antibodies have been obtained that recognize antigens that are expressed on Schwann cells (Ran-1 in rats and SMP in avians) but not enteric glia. Functional differences between enteric glia and non-myelinating Schwann cells, including responses to gliotoxins and in vitro proliferative rates, have also been observed. Developmentally, enteric glia, like Schwann cells, are derived from the neural crest. In both mammals and birds the precursors of the ENS appear to migrate to the bowel from sacral as well as vagal levels of the crest. These crest-derived emigrés give rise to both enteric glia and neurons; however, analyses of the ontogeny of the enteric innervation in a mutant mouse (the ls/ls), in which the original colonizing waves of crest-derived precursor cells are unable to invade the terminal colon, suggest that enteric glia can also arise from Schwann cells that enter the gut with the extrinsic innervation. When induced to leave back-transplanted segments of avian bowel, enteric crest-derived cells migrate into peripheral nerves and form Schwann cells. Enteric glia and Schwann cells thus appear to be different cell types, but ones that derive from lineages that diverge relatively late in ontogeny.

Download full-text PDF

Source
http://dx.doi.org/10.1002/glia.440040211DOI Listing

Publication Analysis

Top Keywords

enteric glia
40
schwann cells
32
enteric
15
glia schwann
12
cells
11
glia
9
cells enteric
8
schwann
8
glia non-myelinating
8
non-myelinating schwann
8

Similar Publications

Background: Inflammatory bowel disease (IBD) is a chronic condition influenced by diet, which affects gut microbiota and immune functions. The rising prevalence of IBD, linked to Western diets in developing countries, highlights the need for dietary interventions. This study aimed to assess the impact of white kidney beans (WKB) on gut inflammation and microbiota changes, focusing on their effects on enteric glial cells (EGCs) and immune activity in colitis.

View Article and Find Full Text PDF

Children with neurodegenerative disease often have debilitating gastrointestinal symptoms. We hypothesized that this may be due at least in part to underappreciated degeneration of neurons in the enteric nervous system (ENS), the master regulator of bowel function. To test this hypothesis, we evaluated mouse models of neuronal ceroid lipofuscinosis type 1 and 2 (CLN1 and CLN2 disease, respectively), neurodegenerative lysosomal storage disorders caused by deficiencies in palmitoyl protein thioesterase-1 and tripeptidyl peptidase-1, respectively.

View Article and Find Full Text PDF

Clostridioides difficile, a spore-forming anaerobic bacterium, is the primary cause of hospital antibiotic-associated diarrhea. Key virulence factors, toxins A (TcdA) and B (TcdB), significantly contribute to C. difficile infection (CDI).

View Article and Find Full Text PDF

Human Enteric Glia Diversity in Health and Disease: New Avenues for the Treatment of Hirschsprung Disease.

Gastroenterology

December 2024

Department of Clinical Genetics, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands; Department of Pediatric Surgery, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands. Electronic address:

Background & Aims: The enteric nervous system (ENS), which is composed of neurons and glia, regulates intestinal motility. Hirschsprung disease (HSCR) results from defects in ENS formation; however, although neuronal aspects have been studied extensively, enteric glia remain disregarded. This study aimed to explore enteric glia diversity in health and disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!