Epigallocatechin gallate, a constituent of green tea, regulates high glucose-induced apoptosis.

Arch Pharm Res

School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Taegu 702-701, Korea.

Published: January 2008

A high concentration of glucose has been implicated as a causal factor in initiation and progression of diabetic complications, and there is evidence to suggest that hyperglycemia increases the production of free radicals and oxidative stress. Therefore, compounds that scavenge reactive oxygen species may confer regulatory effects on high glucose-induced apoptosis. Epigallocatechin gallate (EGCG), the major polyphenolic of green tea, is reported to have an antioxidant activity. We investigated the effect of EGCG on high glucose-induced apoptosis in U937 cells. Upon exposure to 35 mM glucose for 2 days, there was a distinct difference between untreated cells and cells pre-treated with 1 microM EGCG for 2 h in regard to cellular redox status and oxidative DNA damage to cells. EGCG pre-treated cells showed significant suppression of apoptotic features such as DNA fragmentation, damage to mitochondrial function, and modulation of apoptotic marker proteins upon exposure to high glucose. This study indicates that EGCG may play an important role in regulating the apoptosis induced by high glucose presumably through scavenging of reactive oxygen species.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12272-008-1117-6DOI Listing

Publication Analysis

Top Keywords

high glucose-induced
12
glucose-induced apoptosis
12
epigallocatechin gallate
8
green tea
8
reactive oxygen
8
oxygen species
8
high glucose
8
high
6
egcg
5
cells
5

Similar Publications

FSTL1 aggravates high glucose-induced oxidative stress and transdifferentiation in HK-2 cells.

Sci Rep

January 2025

Medical Imaging Center, First Affiliated Hospital, Jiamusi University, Jiamusi, Heilongjiang, China.

Chronic hyperglycemia, a hallmark of diabetes, can trigger inflammatory responses in the kidney, leading to diabetic nephropathy (DN). Follistatin-like protein 1 (FSTL1) has emerged as a potential therapeutic target in various kidney diseases. This study investigated the effect of high glucose on FSTL1 expression and its role in oxidative stress and cellular transdifferentiation injury in HK-2 human proximal tubule epithelial cells, a model of DN.

View Article and Find Full Text PDF

Aim: Imbalanced M1/M2 macrophage phenotype activation is a key point in diabetic kidney disease (DKD). Macrophages mainly exhibit the M1 phenotype, which contributes to inflammation and fibrosis in DKD. Studies have indicated that autophagy plays an important role in M1/M2 activation.

View Article and Find Full Text PDF

Endothelial cells and high glucose-induced endothelial dysfunction are the common origin of chronic diabetic complications such as retinopathy, nephropathy, and cardiomyopathy. Yet their common origins, the vascular manifestations of such complications are different. We examined the basal heterogeneity between microvascular endothelial cells(MECs) from the retina, kidneys, and heart, as well as their differential responses to hyperglycemia in diabetes.

View Article and Find Full Text PDF

Diabetic kidney disease (DKD), a.k.a diabetic nephropathy, is a leading cause of end-stage renal disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!