A high concentration of glucose has been implicated as a causal factor in initiation and progression of diabetic complications, and there is evidence to suggest that hyperglycemia increases the production of free radicals and oxidative stress. Therefore, compounds that scavenge reactive oxygen species may confer regulatory effects on high glucose-induced apoptosis. Epigallocatechin gallate (EGCG), the major polyphenolic of green tea, is reported to have an antioxidant activity. We investigated the effect of EGCG on high glucose-induced apoptosis in U937 cells. Upon exposure to 35 mM glucose for 2 days, there was a distinct difference between untreated cells and cells pre-treated with 1 microM EGCG for 2 h in regard to cellular redox status and oxidative DNA damage to cells. EGCG pre-treated cells showed significant suppression of apoptotic features such as DNA fragmentation, damage to mitochondrial function, and modulation of apoptotic marker proteins upon exposure to high glucose. This study indicates that EGCG may play an important role in regulating the apoptosis induced by high glucose presumably through scavenging of reactive oxygen species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12272-008-1117-6 | DOI Listing |
Clin Exp Nephrol
January 2025
Department of Geriatrics, Liuzhou People's Hospital, Wenchang No. 8 Road, Liuzhou, 545006, Guangxi, China.
Sci Rep
January 2025
Medical Imaging Center, First Affiliated Hospital, Jiamusi University, Jiamusi, Heilongjiang, China.
Chronic hyperglycemia, a hallmark of diabetes, can trigger inflammatory responses in the kidney, leading to diabetic nephropathy (DN). Follistatin-like protein 1 (FSTL1) has emerged as a potential therapeutic target in various kidney diseases. This study investigated the effect of high glucose on FSTL1 expression and its role in oxidative stress and cellular transdifferentiation injury in HK-2 human proximal tubule epithelial cells, a model of DN.
View Article and Find Full Text PDFPLoS One
December 2024
Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing Jiangsu, China.
Aim: Imbalanced M1/M2 macrophage phenotype activation is a key point in diabetic kidney disease (DKD). Macrophages mainly exhibit the M1 phenotype, which contributes to inflammation and fibrosis in DKD. Studies have indicated that autophagy plays an important role in M1/M2 activation.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada.
Endothelial cells and high glucose-induced endothelial dysfunction are the common origin of chronic diabetic complications such as retinopathy, nephropathy, and cardiomyopathy. Yet their common origins, the vascular manifestations of such complications are different. We examined the basal heterogeneity between microvascular endothelial cells(MECs) from the retina, kidneys, and heart, as well as their differential responses to hyperglycemia in diabetes.
View Article and Find Full Text PDFNoncoding RNA Res
April 2025
Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India.
Diabetic kidney disease (DKD), a.k.a diabetic nephropathy, is a leading cause of end-stage renal disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!