Regulation of the number of eggs ovulated by different mammalian species remains poorly understood. Here we show that oocyte-specific deletion at the primary follicle stage of core 1 beta1,3-galactosyltransferase (T-synthase; generates core 1-derived O-glycans), leads to a sustained increase in fertility. T-syn mutant females ovulated 30-50% more eggs and had a sustained increase in litter size compared to controls. Ovarian weights and follicle numbers were greater in mutants, but follicular apoptosis was not decreased. The number of follicles entering the growing pool was unaltered, but 3-wk mutants ovulated fewer eggs, suggesting that increased fertility results from prolonged follicle development. T-syn mutant ovaries also contained numerous multiple-oocyte follicles (MOFs) that appeared to form by adjacent, predominantly preantral, follicles joining--a new mechanism for MOF generation. Ovulation of multiple eggs from MOFs was not the reason for increased fertility based on ovulated egg and corpora lutea numbers. Thus, the absence of T-synthase caused modified follicular development, leading to the maturation and ovulation of more follicles, to MOF formation at late stages of folliculogenesis, and to increased fertility. These results identify novel roles for glycoproteins from the oocyte as suppressors of fertility and regulators of follicular integrity in the mouse.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3003613 | PMC |
http://dx.doi.org/10.1096/fj.07-101709 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Obstetrics and Gynecology, Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Assisted Reproduction Unit, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
The developmental competence and epigenetic progression of oocytes gradually become dysregulated with increasing maternal age. However, the mechanisms underlying age-related epigenetic regulation in oocytes remain poorly understood. Zygote arrest proteins 1 and 2 (ZAR1/2) are two maternal factors with partially redundant roles in maintaining oocyte quality, mainly known by regulating mRNA stability.
View Article and Find Full Text PDFFertil Steril
January 2025
Division of Reproductive Endocrinology and Infertility, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Lutherville, MD.
Objective: To assess the relationship between endometrial thickness and live birth rates in fresh embryo transfer and frozen embryo transfer with and without preimplantation genetic testing.
Design: Retrospective cohort study using the Society for Assisted Reproductive Technology Clinic Outcome Reporting System (SART CORS).
Subjects: Autologous IVF fresh and frozen embryo transfer cycles initiated in 2019-2020.
Plant Physiol Biochem
January 2025
Department of Agronomy, UAS, GKVK, Bengaluru, India.
Nanoparticles play a significant role in enhancing crop yield and reducing nutrient loss through precise nutrient delivery mechanisms. However, it is imperative to ascertain the specific plant physiology altered by these nanoparticles. This study investigates the effects of green-synthesized nanoparticles, specifically boron nitride and sulphur, on sunflower yield, seed quality, and physiological activities.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
School of Public Health, Jiangxi Medical College, Nanchang University; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang 330006, China; Department of Reproductive Medicine, the 1st affiliated hospital, Jiangxi Medical College, Nanchang University; Jiangxi Key Laboratory of Reproductive Health, Nanchang 330006, China; HuanKui College, Nanchang University, Nanchang 330031, China; Chongqing Research Institute of Nanchang University, Nanchang University, Nanchang 330006, China. Electronic address:
The impact of micro/nano plastics (MPs/NPs) on human health is a significant area of research. Studies on the effects of maternal exposure to microplastics (MPs) on the fertility in offspring have been conducted, but the damage caused by nanoplastics (NPs) remains ambiguous. In this study, pregnant Kunming mice were exposed to 30 mg/kg/day PS-NPs from 0.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
Microplastic pollution seriously affects global agroecosystems, strongly influencing soil processes and crop growth. Microplastics impact could be size-dependent, yet relevant field experiments are scarce. We conducted a field experiment in a soil-maize agroecosystem to assess interactions between microplastic types and sizes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!