Male sex hormones exacerbate lung function impairment after bleomycin-induced pulmonary fibrosis.

Am J Respir Cell Mol Biol

Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.

Published: July 2008

The roles of sex hormones as modulators of lung function and disease have received significant attention as differential sex responses to various lung insults have been recently reported. The present study used a bleomycin-induced pulmonary fibrosis model in C57BL/6 mice to examine potential sex differences in physiological and pathological outcomes. Endpoints measured included invasive lung function assessment, immunological response, lung collagen deposition, and a quantitative histological analysis of pulmonary fibrosis. Male mice had significantly higher basal static lung compliance than female mice (P < 0.05) and a more pronounced decline in static compliance after bleomycin administration when expressed as overall change or percentage of baseline change (P < 0.05). In contrast, there were no significant differences between the sexes in immune cell infiltration into the lung or in total lung collagen content after bleomycin. Total lung histopathology scores measured using the Ashcroft method did not differ between the sexes, while a quantitative histopathology scoring system designed to determine where within the lung the fibrosis occurred indicated a tendency toward more fibrosis immediately adjacent to airways in bleomycin-treated male versus female mice. Furthermore, castrated male mice exhibited a female-like response to bleomycin while female mice given exogenous androgen exhibited a male-like response. These data indicate that androgens play an exacerbating role in decreased lung function after bleomycin administration, and traditional measures of fibrosis may miss critical differences in lung function between the sexes. Sex differences should be carefully considered when designing and interpreting experimental models of pulmonary fibrosis in mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2438447PMC
http://dx.doi.org/10.1165/rcmb.2007-0340OCDOI Listing

Publication Analysis

Top Keywords

lung function
20
pulmonary fibrosis
16
lung
12
female mice
12
sex hormones
8
bleomycin-induced pulmonary
8
sex differences
8
lung collagen
8
male mice
8
bleomycin administration
8

Similar Publications

Maximizing phonation: impact of inspiratory muscle strengthening on vocal durations and pitch range.

BMC Pulm Med

January 2025

Department of Rehabilitation Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.

Background: This study investigated the acute effects of inspiratory muscle warm-up (IWU) on vocal performance in singers. Proper vocal and respiratory warm-up can enhance vocal range, quality, and endurance. The aim was to determine whether IWU improves maximum phonation time and pitch range, contributing to better voice production efficiency (vocal efficiency) and reduced fatigue.

View Article and Find Full Text PDF

Background: The early stages of tumor bone metastasis are closely associated with changes in the vascular niche of the bone microenvironment, and abnormal angiogenesis accelerates tumor metastasis and progression. However, the effects of lung adenocarcinoma (LUAD) cells reprogrammed by the bone microenvironment on the vascular niche within the bone microenvironment and the underlying mechanisms remain unclear. This study investigates the effects and mechanisms of LUAD cells reprogrammed by the bone microenvironment on endothelial cells and angiogenesis, providing insights into the influence of tumor cells on the vascular niche within the bone microenvironment.

View Article and Find Full Text PDF

HMGB1 mediates epithelial-mesenchymal transition and fibrosis in silicosis via RAGE/β-catenin signaling.

Chem Biol Interact

January 2025

Hebei Key Laboratory of Organ Fibrosis, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China. Electronic address:

Epithelial-mesenchymal transition (EMT) is implicated in the pathogenesis of silicosis. High mobility group box 1 (HMGB1) has been found to induce EMT in fibrotic diseases. Previous studies have revealed a critical role of HMGB1 in silicosis, whereas the detail mechanisms still obscure.

View Article and Find Full Text PDF

Evaluation of the therapeutic effects of nebulized inhalation of hydrogen-rich water on primary blast lung injury in C57BL/6 mice.

Surgery

January 2025

Senior Department of Burns & Plastic Surgery, Institute of Burn in the Fourth Medical Centre, Chinese PLA General Hospital, Beijing, China. Electronic address:

Background: Primary blast lung injury is a common and severe consequence of explosion events, characterized by immediate and delayed effects such as apnea and rapid shallow breathing. The overpressure generated by blasts leads to alveolar and capillary damage, resulting in ventilation-perfusion mismatch and increased intrapulmonary shunting. This reduces the effective gas exchange area, causing hypoxemia and hypercapnia.

View Article and Find Full Text PDF

Klebsiella pneumoniae-derived extracellular vesicles impair endothelial function by inhibiting SIRT1.

Cell Commun Signal

January 2025

Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China.

Background: The potential role of Klebsiella pneumoniae (K.pn) in hypertension development has been emphasized, although the specific mechanisms have not been well understood. Bacterial extracellular vesicles (BEVs) released by Gram-negative bacteria modulate host cell functions by delivering bacterial components to host cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!