PMNT single crystals in the relaxor-ferroelectric lead magnesium niobate (PMN)-lead titanate (PT) system provide significant advantage for underwater sonar transducers. Compared to lead zirconate titanate (PZT) ceramics, the large electromechanical coupling factor provides significant increases in transducer bandwidth. The superior strain energy density generates higher source level across the band, and the lower Young's modulus allows considerably smaller transducers. These payoffs occur even when PMNT crystals are subject to navy operating conditions such as uniaxial mechanical compressive stresses up to 42 MPa, electric fields up to 1.2 MV/m, and a temperature range from 5 to 50 degrees C. The impact of navy-relevant electric fields and mechanical stresses on crack propagation and failure of piezoelectric single crystals is investigated. The compressive, flexural, and tensile strength of PMNT crystals is reported and discussed with respect to conventional PZT ceramics and the operating conditions of a typical naval transducer.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TUFFC.2007.561DOI Listing

Publication Analysis

Top Keywords

single crystals
12
pmnt single
8
sonar transducers
8
pzt ceramics
8
pmnt crystals
8
operating conditions
8
electric fields
8
crystals
5
mechanical electromechanical
4
electromechanical properties
4

Similar Publications

The two-dimensional electron gas (2DEG) is a fundamental model, which is drawing increasing interest because of recent advances in experimental and theoretical studies of 2D materials. Current understanding of the ground state of the 2DEG relies on quantum Monte Carlo calculations, based on variational comparisons of different Ansätze for different phases. We use a single variational ansatz, a general backflow-type wave function using a message-passing neural quantum state architecture, for a unified description across the entire density range.

View Article and Find Full Text PDF

The emergence of a quantum spin liquid (QSL), a state of matter that can result when electron spins are highly correlated but do not become ordered, has been the subject of a considerable body of research in condensed matter physics [1,2]. Spin liquid states have been proposed as hosts for high-temperature superconductivity [3] and can host topological properties with potential applications in quantum information science [4]. The excitations of most quantum spin liquids are not conventional spin waves but rather quasiparticles known as spinons, whose existence is well established experimentally only in one-dimensional systems; the unambiguous experimental realization of QSL behavior in higher dimensions remains challenging.

View Article and Find Full Text PDF

Gigahertz Surface Acoustic Wave Topological Rainbow in Nanoscale Phononic Crystals.

Phys Rev Lett

December 2024

Nanjing University, National Laboratory of Solid State Microstructures & Department of Materials Science and Engineering, Nanjing 210093, China.

Precisely engineered gigahertz surface acoustic wave (SAW) trapping enables diverse and controllable interconnections with various quantum systems, which are crucial to unlocking the full potential of phonons. The topological rainbow based on synthetic dimension presents a promising avenue for facile and precise localization of SAWs. In this study, we successfully developed a monolithic gigahertz SAW topological rainbow by utilizing a nanoscale translational deformation as a synthetic dimension.

View Article and Find Full Text PDF

Analytical Model for Atomic Relaxation in Twisted Moiré Materials.

Phys Rev Lett

December 2024

National University of Singapore, Department of Materials Science and Engineering, 9 Engineering Drive 1, Singapore 117575.

By virtue of being atomically thin, the electronic properties of heterostructures built from two-dimensional materials are strongly influenced by atomic relaxation. The atomic layers behave as flexible membranes rather than rigid crystals. Here we develop an analytical theory of lattice relaxation in twisted moiré materials.

View Article and Find Full Text PDF

Hydrogen-bonded cocrystals have attracted considerable attention as they allow fine-tuning of properties through the choice of hydrogen-bond donors and acceptors. In this study, triphenylarsine oxide (PhAsO) is introduced as a strong hydrogen-bond acceptor molecule. Due to its higher Lewis basicity compared to triphenylphosphine oxide (PhPO), it acts as a strong hydrogen-bond acceptor, which is demonstrated in six new cocrystals with HO and -di(hydroperoxy)cycloalkanes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!