Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A commonly used routine in seismic signal processing is deconvolution, which comprises two operations: reflectivity detection and magnitude estimation. Existing statistical detectors are computationally expensive. In the paper, a Hopfield neural network is constructed to perform the reflectivity detection operation. The basic idea is to represent the reflectivity detection problem by an equivalent optimization problem and then construct a Hopfield neural network to solve this optimization problem. The neural detector is applied to a synthetic seismic trace and 30 real seismic traces. The processing results show that the accuracy of the neural detector is about the same as that of the existing detectors, but the speed of the neural detector is much faster.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/72.125877 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!