Denufosol: a review of studies with inhaled P2Y(2) agonists that led to Phase 3.

Pulm Pharmacol Ther

Development, Inspire Pharmaceuticals, Inc., 4222 Emperor Blvd, Suite 200, Durham, NC, USA.

Published: August 2008

Among the most promising of the new therapies being developed for the treatment of Cystic Fibrosis (CF) are those targeted at increasing mucosal hydration on the surface of the airways. One of these therapies, P2Y(2) receptor agonists, bypasses the defective CFTR chloride channel, and activates an alternative chloride channel. This activation results in an increase in airway surface epithelial hydration, and through these actions and effects on cilia beat frequency, increases mucociliary clearance. The pharmacology of P2Y(2) agonists has been confirmed in several preclinical and clinical studies. Denufosol tetrasodium is a novel second-generation, metabolically stable, selective P2Y(2) receptor agonist currently in Phase 3 clinical development. In radiolabelled deposition studies of P2Y(2) agonists in healthy non-smokers and smokers, approximately 7mg of a 40-mg nebulizer (PARI LC Star) load was deposited in the lungs. In a pharmacokinetic study in healthy volunteers, very limited systemic exposure was observed when doses of 200mg of denufosol were nebulized. Thus, it appears that high concentrations of denufosol can be achieved in the airways with very low systemic absorption. Denufosol has been generally well-tolerated in healthy volunteers and patients with CF. The most common adverse events were in the respiratory system, with cough having the highest frequency. Doses of 20-60mg have been evaluated in Phase 2 trials of up to 28 days duration, and superiority relative to placebo on FEV1 has been observed in patients with relatively normal lung function (FEV1 greater than or equal to 75% of predicted). The first Phase 3 trial is a comparison of denufosol 60mg and placebo in 350 patients with CF with FEV1 at study entry greater than or equal to 75% of predicted.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pupt.2007.12.003DOI Listing

Publication Analysis

Top Keywords

p2y2 agonists
12
p2y2 receptor
8
chloride channel
8
healthy volunteers
8
greater equal
8
equal 75%
8
75% predicted
8
denufosol
6
p2y2
5
denufosol review
4

Similar Publications

Chronic kidney disease is defined as a progressive loss of kidney function associated with impaired recovery after acute kidney injury. Renal ischemia-reperfusion (IR) induces oxidative stress and inflammatory responses leading to severe tissue damage, where incomplete or maladaptive repair accelerates renal fibrosis and aging. To investigate the role of the purinergic P2Y2 receptor (P2Y2R) in these processes, we used P2Y2R knockout (KO) mice subjected to IR.

View Article and Find Full Text PDF

Activation of Purinergic P2Y2 Receptor Protects the Kidney Against Renal Ischemia and Reperfusion Injury in Mice.

Int J Mol Sci

November 2024

Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea.

Extracellular ATP plays an important role in renal physiology as well as the pathogenesis of acute kidney injury induced by renal ischemia and reperfusion (IR). Expression of the purinergic P2Y2 receptor has been shown on inflammatory and structural cells of the kidney, and P2Y2R is preferably activated by ATP (or UTP). Here, we investigated the molecular mechanism of P2Y2R during IR injury by using P2Y2R knockout (KO) mice and a selective P2Y2R agonist, MRS2768.

View Article and Find Full Text PDF

Our previous work had identified that at the acupuncture point (acupoint), acupuncture-induced ATP release was a pivotal event in the initiation of analgesia. We aimed to further elucidate the degradation of ATP by CD39. Acupuncture was administered at Zusanli acupoint on arthritis rats, and pain thresholds of the hindpaws were determined.

View Article and Find Full Text PDF

G protein coupled P2Y2 receptor as a regulatory molecule in cancer progression.

Arch Biochem Biophys

December 2024

Urology Department, The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang City, China. Electronic address:

The occurrence and development of cancer involves the participation of many factors, its pathological mechanism is far more complicated than other diseases, and the treatment is also extremely difficult. Although the treatment of cancer adopts diversified methods to improve the survival rate and quality of life of patients, but the drug resistance, metastasis and recurrence of cancer cause most patients to fail in treatment. Therefore, exploring new molecular targets in cancer pathology is of great value for improving and preventing the treatment of cancer.

View Article and Find Full Text PDF

Multifunctional Cerium Oxide Nanozyme for Synergistic Dry Eye Disease Therapy.

ACS Appl Mater Interfaces

July 2024

National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.

Dry eye disease (DED) is a chronic multifactorial ocular surface disease mainly caused by the instability of tear film, characterized by a series of ocular discomforts and even visual disorders. Oxidative stress has been recognized as an upstream factor in DED development. Diquafosol sodium (DQS) is an agonist of the P2Y receptor to restore the integrity/stability of the tear film.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!