Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Previous reports showed that receptor-type protein-tyrosine phosphatase PTPRK co-localizes with beta-catenin at adherens junctions, and in vitro experiments suggested that beta-catenin could be substrate of PTPRK-mediated phosphatase activity. beta-catenin is a molecule endowed with a dual function being involved both in cell adhesion and in Wnt signaling pathway. Here we provide evidence for the role of PTPRK in negatively regulating the beta-catenin transcriptional activity by modulating its intracellular and membrane distribution. Expression of PTPRK protein in HEK293 cells and in PTPRK-null melanoma cell lines, one of which harbors a mutated oncogenic beta-catenin, impairs nuclear accumulation of wild type and oncogenic forms of beta-catenin, limits cytosolic levels of tyrosine-phosphorylated beta-catenin, and leads to re-localization of E-cadherin/beta-catenin complexes in ordered membrane phase along cell-cell contacts. This re-modulation of beta-catenin cellular distribution results in the inhibition of cyclin D1 and c-myc protein expression, whose genes are targets of beta-catenin. Tumor cells upon re-expression of PTPRK have a reduced proliferative and migration capacity. Moreover we show that PTPRK is also active in negatively regulating the transactivating function of beta-catenin in normal melanocytes as confirmed by experiments with silenced PTPRK by specific siRNA. Our data show that PTPRK influences transactivating activity of beta-catenin in non-tumoral and neoplastic cells by regulating the balance between signaling and adhesive beta-catenin, thus providing biochemical basis for the hypothesis of PTPRK as a tumor suppressor gene.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cellsig.2007.12.024 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!