Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Previous exploration of oncology study design efficiency has focused on Markov processes alone (probability-based events) without consideration for time dependencies. Barriers to study completion include time delays associated with patient accrual, inevaluability (IE), time to dose limiting toxicities (DLT) and administrative and review time. Discrete event simulation (DES) can incorporate probability-based assignment of DLT and IE frequency, correlated with cohort in the case of DLT, with time-based events defined by stochastic relationships. A SAS-based solution to examine study efficiency metrics and evaluate design modifications that would improve study efficiency is presented. Virtual patients are simulated with attributes defined from prior distributions of relevant patient characteristics. Study population datasets are read into SAS macros which select patients and enroll them into a study based on the specific design criteria if the study is open to enrollment. Waiting times, arrival times and time to study events are also sampled from prior distributions; post-processing of study simulations is provided within the decision macros and compared across designs in a separate post-processing algorithm. This solution is examined via comparison of the standard 3+3 decision rule relative to the "rolling 6" design, a newly proposed enrollment strategy for the phase I pediatric oncology setting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2007.12.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!