Most treatments for malaria target the blood stage of infection in the human host, although few can also block transmission of the parasite to the mosquito. We show here that the compound centanamycin is very effective against blood-stage malarial infections in vitro and in vivo and has profound effects on sexual differentiation of the parasites in mosquitoes. After drug treatment, parasite development is arrested within the midguts of mosquitoes, failing to produce the infective forms that migrate to the salivary glands. The mechanism of parasite death is associated with modification of Plasmodium genomic DNA. We detected DNA damage in parasites isolated from mice 24 h after treatment with centanamycin, and, importantly, we also detected this DNA damage in parasites within mosquitoes that had fed on these mice 10 days earlier. This demonstrates that damage to parasite DNA during blood-stage infection persists from the vertebrate to the mosquito host and provides a novel biochemical strategy to block malaria transmission.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/526788 | DOI Listing |
Parasit Vectors
January 2025
Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, UK.
Mosquitoes are responsible for the transmission of numerous pathogens, including Plasmodium parasites, arboviruses and filarial worms. They pose a significant risk to public health with over 200 million cases of malaria per annum and approximately 4 billion people at risk of arthropod-borne viruses (arboviruses). Mosquito populations are geographically expanding into temperate regions and their distribution is predicted to continue increasing.
View Article and Find Full Text PDFBMJ Glob Health
January 2025
PMI Evolve Project, PATH, Washington, District of Columbia, USA.
Introduction: National malaria programmes must weigh the relative benefits of different vector control and elimination tools to prioritise resource allocation with the greatest impact. This study assesses the epidemiological and entomological impacts of piperonyl butoxide insecticide-treated nets (PBO ITN-only arm) compared with the combination of two annual non-pyrethroid indoor residual spraying (IRS) campaigns and standard pyrethroid ITNs (IRS+Standard Pyrethroid ITN arm) in the Amhara region of Ethiopia.
Methods: An open-label, stratified block-cluster randomised trial was designed to compare the impacts of the two intervention arms.
mSphere
January 2025
Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA.
Malaria is a highly lethal infectious disease caused by parasites. These parasites are transmitted to vertebrate hosts when mosquitoes of the genus probe for a blood meal. Sporozoites, the infectious stage of , transit to the liver within hours of injection into the dermis.
View Article and Find Full Text PDF: Assessing vector bionomics is crucial to improving vector control strategies. Several entomological studies have been conducted to describe malaria transmission in different eco-epidemiological settings in Cameroon; knowledge gaps persist, particularly in highland areas. This study aimed to characterize malaria vectors in three localities along an altitudinal gradient in the western region: Santchou (700 m), Dschang (1400 m), and Penka Michel (1500 m).
View Article and Find Full Text PDFTrop Biomed
December 2024
Department of Parasitology, Faculty of Medicine, Center of Insect Vector Study, Chiang Mai University, Chiang Mai, Thailand.
Studies have suggested animals as possible reservoir hosts for flaviviruses transmitted by Aedes mosquitoes; however, there is limited evidence for the dengue virus in Malaysia. One of the possible ways to determine the zoonotic potential for any pathogen transmission is through blood meal analysis which can provide valuable insights into the feeding preferences of the mosquitoes. Unfortunately, limited information is available on the feeding preferences of Aedes mosquitoes in Malaysia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!