We use mid-infrared pump-probe spectroscopy to study the ultrafast dynamics of HDO molecules in mixtures of tetramethylurea (TMU) and water. The composition of the studied solutions ranges from pure water to an equimolar mixture of water and TMU. We find that the vibrational relaxation of the OD-stretching vibration of HDO proceeds via an intermediate level in which the molecule is more strongly hydrogen bonded than in the ground state. As the TMU concentration is increased, the lifetime of the excited state and of the intermediate increase from 1.8 to 5.2 ps and from 0.7 to 2.2 ps, respectively. The orientational relaxation data indicate that the solutions contain two types of water molecules: bulk-like molecules that have the same reorientation time constant as in the pure liquid (taurot = 2.5 ps) and molecules that are strongly immobilized (taurot > 10 ps). The immobilized water molecules turn out to be involved in the solvation of the methyl groups of the tetramethylurea molecule. The fraction of immobilized water molecules grows with increasing TMU concentration, reaching a limiting value of 60% at very high concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp077135cDOI Listing

Publication Analysis

Top Keywords

water molecules
12
water
8
tmu concentration
8
immobilized water
8
molecules
6
strong slowing
4
slowing water
4
water reorientation
4
reorientation mixtures
4
mixtures water
4

Similar Publications

Surface-enhanced Raman scattering (SERS) technology has attracted more and more attention due to its high sensitivity, low water interference, and quick measurement. Constructing high-performance SERS substrates with high sensitivity, uniformity and reproducibility is of great importance to put the SERS technology into practical application. In this paper, we report a simple fabrication process to construct dense silver-coated PMMA nanoparticles-on-a-mirror SRES substrates.

View Article and Find Full Text PDF

Ampere-level reduction of pure nitrate by electron-deficient Ru with K ions repelling effect.

Nat Commun

December 2024

School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.

Electrochemical nitrate reduction reaction offers a sustainable and efficient pathway for ammonia synthesis. Maintaining satisfactory Faradaic efficiency for long-term nitrate reduction under ampere-level current density remains challenging due to the inevitable hydrogen evolution, particularly in pure nitrate solutions. Herein, we present the application of electron deficiency of Ru metals to boost the repelling effect of counter K ions via the electric-field-dependent synergy of interfacial water and cations, and thus largely promote nitrate reduction reaction with a high yield and well-maintained Faradaic efficiency under ampere-level current density.

View Article and Find Full Text PDF

This paper presented the preparation, characterization, and adsorption properties of Brazil nut shell activated carbon for catechol removal from aqueous solutions. The equilibrium adsorption of catechol molecules on this activated was experimentally quantified at pH 6 and temperatures ranging from 25 to 55 °C, and at 25 °C and pH ranging from 6 to 10. These results were utilized to elucidate the role of surface functionalities through statistical physics calculations.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFASs) have recently garnered considerable concerns regarding their impacts on human and ecological health. Despite the important roles of polyamide membranes in remediating PFASs-contaminated water, the governing factors influencing PFAS transport across these membranes remain elusive. In this study, we investigate PFAS rejection by polyamide membranes using two machine learning (ML) models, namely XGBoost and multimodal transformer models.

View Article and Find Full Text PDF

Identifying and tuning coordinated water molecules for efficient electrocatalytic water oxidation.

Nat Commun

December 2024

Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China.

Coordination complexes are promising candidates for powerful electrocatalytic oxygen evolution reaction but challenges remain in favoring the kinetics behaviors through local coordination regulation. Herein, by refining the synergy of carboxylate anions and multiconjugated benzimidazole ligands, we tailor a series of well-defined and stable coordination complexes with three-dimensional supramolecular/coordinated structures. The coordinated water as potential open coordination sites can directly become intermediates, while the metal center easily achieves re-coordination with water molecules in the pores to resist lattice oxygen dissolution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!