AI Article Synopsis

Article Abstract

Inositol 1,4,5-trisphosphate (InsP(3)) receptors are calcium-release channels found in the endoplasmic/sarcoplasmic reticulum (ER/SR) membrane of diverse cell types. InsP(3) receptors release Ca(2+) from ER/SR lumenal stores in response to InsP(3) generated from various stimuli. The complex spatial and temporal patterns of InsP(3) receptor-mediated Ca(2+) release regulate many cellular processes, ranging from gene transcription to memory. Ankyrins are adaptor proteins implicated in the targeting of ion channels and transporters to specialized membrane domains. Multiple independent studies have documented in vitro and in vivo interactions between ankyrin polypeptides and the InsP(3) receptor. Moreover, loss of ankyrin-B leads to loss of InsP(3) receptor membrane expression and stability in cardiomyocytes. Despite extensive biochemical and functional data, the validity of in vivo ankyrin-InsP(3) receptor interactions remains controversial. This controversy is based on inconsistencies between a previously identified ankyrin-binding region on the InsP(3) receptor and InsP(3) receptor topology data that demonstrate the inaccessibility of this lumenal binding site on the InsP(3) receptor to cytosolic ankyrin polypeptides. Here we use two methods to revisit the requirements on InsP(3) receptor for ankyrin binding. We demonstrate that ankyrin-B interacts with the cytoplasmic N-terminal domain of InsP(3) receptor. In summary, our findings demonstrate that the ankyrin-binding site is located on the cytoplasmic face of the InsP(3) receptor, thus validating the feasibility of in vivo ankyrin-InsP(3) receptor interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2858327PMC
http://dx.doi.org/10.1002/jcb.21704DOI Listing

Publication Analysis

Top Keywords

insp3 receptor
36
insp3
13
receptor
12
ankyrin-insp3 receptor
12
receptor interactions
12
insp3 receptors
8
ankyrin polypeptides
8
vivo ankyrin-insp3
8
revisiting ankyrin-insp3
4
interactions
4

Similar Publications

Cellular Senescence Genes as Cutting-Edge Signatures for Abdominal Aortic Aneurysm Diagnosis: Potential for Innovative Therapeutic Interventions.

J Cell Mol Med

January 2025

State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China.

Abdominal aortic aneurysm (AAA) is the most prevalent dilated arterial aneurysm that poses a significant threat to older adults, but the molecular mechanisms linking senescence to AAA progression remain poorly understood. This study aims to identify cellular senescence-related genes (SRGs) implicated in AAA development and assess their potential as therapeutic targets. Four hundred and twenty-nine differentially expressed genes (DEGs) were identified from the GSE57691 training set, and 867 SRGs were obtained.

View Article and Find Full Text PDF

Background: Bok is a poorly characterized Bcl-2 protein family member with roles yet to be clearly defined. It is clear, however, that Bok binds strongly to inositol 1,4,5-trisphosphate (IP) receptors (IPRs), which govern the mobilization of Ca from the endoplasmic reticulum, a signaling pathway required for many cellular processes. Also known is that Bok has a highly conserved phosphorylation site for cAMP-dependent protein kinase at serine-8 (Ser-8).

View Article and Find Full Text PDF

Inositol 1,4,5-trisphosphate receptors (IP3R) mediate Ca2+ release from intracellular stores, contributing to complex regulation of numerous physiological responses. The involvement of the three IP3R genes (ITPR1, ITPR2 and ITPR3) in inherited human diseases has started to shed light on the essential roles of each receptor in different human tissues and cell types. Variants in the ITPR3 gene, which encodes IP3R3, have recently been found to cause demyelinating sensorimotor Charcot-Marie-Tooth neuropathy type 1J (CMT1J).

View Article and Find Full Text PDF

Astrocytes from different brain regions respond with Ca elevations to the catecholamine norepinephrine (NE). However, whether this noradrenergic-mediated signaling is present in astrocytes from the ventral tegmental area (VTA), a dopaminergic circuit receiving noradrenergic inputs, has not yet been investigated. To fill in this gap, we applied a pharmacological approach along with two-photon microscopy and an AAV strategy to express a genetically encoded calcium indicator in VTA astrocytes.

View Article and Find Full Text PDF

This review comprehensively explores the critical role of calcium as an essential small-molecule biomessenger in skeletal muscle function. Calcium is vital for both regulating muscle excitation-contraction coupling and for the development, maintenance, and regeneration of muscle cells. The orchestrated release of calcium from the endoplasmic reticulum (ER) is mediated by receptors such as the ryanodine receptor (RYR) and inositol 1,4,5-trisphosphate receptor (IP3R), which is crucial for skeletal muscle contraction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!