Inositol 1,4,5-trisphosphate (InsP(3)) receptors are calcium-release channels found in the endoplasmic/sarcoplasmic reticulum (ER/SR) membrane of diverse cell types. InsP(3) receptors release Ca(2+) from ER/SR lumenal stores in response to InsP(3) generated from various stimuli. The complex spatial and temporal patterns of InsP(3) receptor-mediated Ca(2+) release regulate many cellular processes, ranging from gene transcription to memory. Ankyrins are adaptor proteins implicated in the targeting of ion channels and transporters to specialized membrane domains. Multiple independent studies have documented in vitro and in vivo interactions between ankyrin polypeptides and the InsP(3) receptor. Moreover, loss of ankyrin-B leads to loss of InsP(3) receptor membrane expression and stability in cardiomyocytes. Despite extensive biochemical and functional data, the validity of in vivo ankyrin-InsP(3) receptor interactions remains controversial. This controversy is based on inconsistencies between a previously identified ankyrin-binding region on the InsP(3) receptor and InsP(3) receptor topology data that demonstrate the inaccessibility of this lumenal binding site on the InsP(3) receptor to cytosolic ankyrin polypeptides. Here we use two methods to revisit the requirements on InsP(3) receptor for ankyrin binding. We demonstrate that ankyrin-B interacts with the cytoplasmic N-terminal domain of InsP(3) receptor. In summary, our findings demonstrate that the ankyrin-binding site is located on the cytoplasmic face of the InsP(3) receptor, thus validating the feasibility of in vivo ankyrin-InsP(3) receptor interactions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2858327 | PMC |
http://dx.doi.org/10.1002/jcb.21704 | DOI Listing |
J Cell Mol Med
January 2025
State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China.
Abdominal aortic aneurysm (AAA) is the most prevalent dilated arterial aneurysm that poses a significant threat to older adults, but the molecular mechanisms linking senescence to AAA progression remain poorly understood. This study aims to identify cellular senescence-related genes (SRGs) implicated in AAA development and assess their potential as therapeutic targets. Four hundred and twenty-nine differentially expressed genes (DEGs) were identified from the GSE57691 training set, and 867 SRGs were obtained.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
Background: Bok is a poorly characterized Bcl-2 protein family member with roles yet to be clearly defined. It is clear, however, that Bok binds strongly to inositol 1,4,5-trisphosphate (IP) receptors (IPRs), which govern the mobilization of Ca from the endoplasmic reticulum, a signaling pathway required for many cellular processes. Also known is that Bok has a highly conserved phosphorylation site for cAMP-dependent protein kinase at serine-8 (Ser-8).
View Article and Find Full Text PDFPLoS Genet
January 2025
Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
Inositol 1,4,5-trisphosphate receptors (IP3R) mediate Ca2+ release from intracellular stores, contributing to complex regulation of numerous physiological responses. The involvement of the three IP3R genes (ITPR1, ITPR2 and ITPR3) in inherited human diseases has started to shed light on the essential roles of each receptor in different human tissues and cell types. Variants in the ITPR3 gene, which encodes IP3R3, have recently been found to cause demyelinating sensorimotor Charcot-Marie-Tooth neuropathy type 1J (CMT1J).
View Article and Find Full Text PDFCells
December 2024
Neuroscience Institute, Section of Padova, National Research Council (CNR), 35131 Padova, Italy.
Astrocytes from different brain regions respond with Ca elevations to the catecholamine norepinephrine (NE). However, whether this noradrenergic-mediated signaling is present in astrocytes from the ventral tegmental area (VTA), a dopaminergic circuit receiving noradrenergic inputs, has not yet been investigated. To fill in this gap, we applied a pharmacological approach along with two-photon microscopy and an AAV strategy to express a genetically encoded calcium indicator in VTA astrocytes.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Road, Lu Zhou, Luzhou, Sichuan, 646000, China.
This review comprehensively explores the critical role of calcium as an essential small-molecule biomessenger in skeletal muscle function. Calcium is vital for both regulating muscle excitation-contraction coupling and for the development, maintenance, and regeneration of muscle cells. The orchestrated release of calcium from the endoplasmic reticulum (ER) is mediated by receptors such as the ryanodine receptor (RYR) and inositol 1,4,5-trisphosphate receptor (IP3R), which is crucial for skeletal muscle contraction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!