Constructive soft tissue remodelling with a biologic extracellular matrix graft: overview and review of the clinical literature.

Acta Chir Belg

Cook Biotech Incorporated, West Lafayette, IN 47906, USA.

Published: March 2008

The extracellular matrix directs all phases of healing following trauma or disease and is therefore nature's ideal scaffold material. When used strategically to induce the repair and restoration of soft tissues following surgery, exogenous extracellular matrix scaffolds interact with surrounding tissues and cells to form a permanent repair without leaving behind a permanent material that can result in chronic inflammation or infection. Biomaterials derived from natural extracellular matrix, such as Surgisis (Cook Medical Incorporated, Bloomington, IN, USA), provide the extracellular components necessary to direct the healing response, allow for the reconstruction of new, healthy tissue and restore mechanical and functional integrity to the damaged site. The 3-dimensional organization of these extracellular components distinguishes the Surgisis mesh from synthetic materials and is associated with better long-term repairs. The tissue response to this biologic mesh is discussed in the context of recent reports on successful clinical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1080/00015458.2007.11680139DOI Listing

Publication Analysis

Top Keywords

extracellular matrix
16
extracellular components
8
extracellular
6
constructive soft
4
soft tissue
4
tissue remodelling
4
remodelling biologic
4
biologic extracellular
4
matrix
4
matrix graft
4

Similar Publications

ASIC1a mediated nucleus pulposus cells pyroptosis and glycolytic crosstalk as a molecular basis for intervertebral disc degeneration.

Inflamm Res

January 2025

Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China.

Background: One of the etiologic components of degenerative spinal illnesses is intervertebral disc degeneration (IVDD), and the accompanying lower back pain is progressively turning into a significant public health problem. Important pathologic characteristics of IVDD include inflammation and acidic microenvironment, albeit it is unclear how these factors contribute to the disease.

Purpose: To clarify the functions of inflammation and the acidic environment in IVDD, identify the critical connections facilitating glycolytic crosstalk and nucleus pulposus cells (NPCs) pyroptosis, and offer novel approaches to IVDD prevention and therapy.

View Article and Find Full Text PDF

Obesity and type 2 diabetes (T2D) are strongly linked to abnormal adipocyte metabolism and adipose tissue (AT) dysfunction. However, existing adipose tissue models have limitations, particularly in the stable culture of fat cells that maintain physiologically relevant phenotypes, hindering a deeper understanding of adipocyte biology and the molecular mechanisms behind differentiation. Current model systems fail to fully replicate in vivo metabolism, posing challenges in adipose research.

View Article and Find Full Text PDF

In injured and diseased tissues, changes in molecular and cellular compositions, as well as tissue architecture, lead to alterations in both physiological and physical characteristics. Notably, the electrical properties of tissues, which can be characterized as bioelectrical impedance (bioimpedance), are closely linked to the health and pathological conditions of the tissues. This highlights the significant role of quantitatively characterizing these electrical properties in improving the accuracy and speed of diagnosis and prognosis.

View Article and Find Full Text PDF

Immunity suffers a function deficit during aging, and the incidence of cancer is increased in the elderly. However, most cancer models employ young mice, which are poorly representative of adult cancer patients. We have previously reported that Triple-Therapy (TT), involving antigen-presenting-cell activation by vinorelbine and generation of TCF1-stem-cell-like T cells (scTs) by cyclophosphamide significantly improved anti-PD-1 efficacy in anti-PD1-resistant models like Triple-Negative Breast Cancer (TNBC) and Non-Hodgkin's Lymphoma (NHL), due to T-cell-mediated tumor killing.

View Article and Find Full Text PDF

Stromal architecture and fibroblast subpopulations with opposing effects on outcomes in hepatocellular carcinoma.

Cell Discov

January 2025

Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.

Dissecting the spatial heterogeneity of cancer-associated fibroblasts (CAFs) is vital for understanding tumor biology and therapeutic design. By combining pathological image analysis with spatial proteomics, we revealed two stromal archetypes in hepatocellular carcinoma (HCC) with different biological functions and extracellular matrix compositions. Using paired single-cell RNA and epigenomic sequencing with Stereo-seq, we revealed two fibroblast subsets CAF-FAP and CAF-C7, whose spatial enrichment strongly correlated with the two stromal archetypes and opposing patient prognosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!