Advanced glycation endproducts (AGEs) are implicated in the complications of diabetes and ageing, affecting several tissues, including bone. Metformin, an insulin-sensitizer drug, reduces the risk of life-threatening macrovascular complications. We have evaluated the hypothesis that metformin can abrogate AGE-induced deleterious effects in osteoblastic cells in culture. In two osteoblast-like cell lines (UMR106 and MC3T3E1), AGE-modified albumin induced cell death, caspase-3 activity, altered intracellular oxidative stress and inhibited alkaline phosphatase activity. Metformin-treatment of osteoblastic cells prevented these AGE-induced alterations. We also assessed the expression of AGE receptors as a possible mechanism by which metformin could modulate the action of AGEs. AGEs-treatment of osteoblast-like cells enhanced RAGE protein expression, and this up-regulation was prevented in the presence of metformin. Although the precise mechanisms involved in metformin signaling are still elusive, our data implicate the AGE-RAGE interaction in the modulation of growth and differentiation of osteoblastic cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/s-2007-992786 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!