Parkinson's disease (PD) is a progressive neurodegenerative disorder whose etiology is not understood. This disease occurs both sporadically and through inheritance of single genes, although the familial types are rare. Over the past decade or so, experimental and clinical data suggest that PD could be a multifactorial, neurodegenerative disease that involves strong interactions between the environment and genetic predisposition. Our understanding of the pathophysiology and motor deficits of the disease relies heavily on fundamental research on animal models and the last few years have seen an explosion of toxin-, inflammation-induced and genetically manipulated models. The insight gained from the use of such models has strongly advanced our understanding of the progression and stages of the disease. The models have also aided the development of novel therapies to improve symptomatic management, and they are critical for the development of neuroprotective strategies. This review critically evaluates these in vivo models and the roles they play in mimicking the progression of PD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2562277 | PMC |
http://dx.doi.org/10.1007/s00401-008-0350-x | DOI Listing |
J Cheminform
December 2024
Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
Ensuring the safety of chemicals for environmental and human health involves assessing physicochemical (PC) and toxicokinetic (TK) properties, which are crucial for absorption, distribution, metabolism, excretion, and toxicity (ADMET). Computational methods play a vital role in predicting these properties, given the current trends in reducing experimental approaches, especially those that involve animal experimentation. In the present manuscript, twelve software tools implementing Quantitative Structure-Activity Relationship (QSAR) models were selected for the prediction of 17 relevant PC and TK properties.
View Article and Find Full Text PDFMol Autism
December 2024
Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Background: Angelman syndrome (AS), a severe neurodevelopmental disorder resulting from the loss of the maternal UBE3A gene, is marked by changes in the brain's white matter (WM). The extent of WM abnormalities seems to correlate with the severity of clinical symptoms, but these deficits are still poorly characterized or understood. This study provides the first large-scale measurement of WM volume reduction in children with AS.
View Article and Find Full Text PDFScand J Immunol
January 2025
Department of Neurology, the Second Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China.
Fas has been shown to positively regulate the differentiation of T helper 17 (Th17) cells in mouse models of experimental autoimmune encephalomyelitis (EAE). Fas protein expression is regulated by ubiquitination but has not been further studied. In this study, we investigated the role of the Fas ubiquitin ligase in Th17 cell differentiation and highlighted its potential as a therapeutic target for EAE.
View Article and Find Full Text PDFJ Nanobiotechnology
December 2024
Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
Chemotherapy is still one of the major approaches in triple-negative breast cancer (TNBC) treatment. The development of new formulations for classic chemotherapeutic drugs remains interests in studies. Camptothecin (CPT) is powerful antitumor agents in TNBC treatment though its clinic applications are limited by its low water solubility and systemic toxicity.
View Article and Find Full Text PDFCell Mol Biol Lett
December 2024
Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.
Background: Radiotherapy for pelvic malignant tumors inevitably causes intestinal tissue damage. The regeneration of intestinal epithelium after radiation injury relies mainly on crypt fission. However, little is known about the regulatory mechanisms of crypt fission events.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!