The microcirculation is unique in its anatomy and physiology and is a self-contained organ system within the human body. It is the site where gas exchange and nutrient supply takes place, but it is also the site which experiences pathological alterations during various shock states and therefore compromises the oxygen supply to tissues and organs. Systemic inflammation for example leads amongst others to increased heterogeneous blood flow, formation of interstitial edema, altered viscosity, leukocyte activation, disturbances in the coagulation system, and to a breakdown of the endothelial barrier function. These alterations inevitably lead to limitations of the oxygen supply to tissues. Without interruption of these pathomechanisms, the dysfunction of the microcirculation will consequently result in organ dysfunction. In this review article a short description of the microcirculatory physiology, the interaction between the macrocirculation and the microcirculation, as well as microcirculatory alterations generated by a systemic inflammatory response will be given. Finally, various therapy options will be described, which, experimentally, can lead to an improvement in microcirculatory dysfunction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00101-007-1300-z | DOI Listing |
Water Res X
May 2025
School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China.
Anaerobic ammonia oxidation (anammox) which converts nitrite and ammonium to dinitrogen gas is an energy-efficient nitrogen removal process. One of the bottlenecks for anammox application in wastewater treatment is the stable supply of nitrite for anammox bacteria. Dissimilatory nitrate reduction to ammonium (DNRA) is a process that converts nitrate to nitrite and then to ammonium.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
Reactive oxygen species (ROS)-responsive drug delivery systems (DDSs) have garnered significant attention in cancer research because of their potential for precise spatiotemporal drug release tailored to high ROS levels within tumors. Despite the challenges posed by ROS distribution heterogeneity and endogenous supply constraints, this review highlights the strategic alliance of ROS-responsive DDSs with photodynamic therapy (PDT), enabling selective drug delivery and leveraging PDT-induced ROS for enhanced therapeutic efficacy. This review delves into the biological importance of ROS in cancer progression and treatment.
View Article and Find Full Text PDFIntroduction: Hypoxaemia is a frequent complication associated with endoscopy conducted under intravenous sedation, highlighting the need for effective and practical interventions. This systematic review aims to evaluate the effectiveness of nasal mask oxygenation in reducing the incidence of hypoxaemia during endoscopy under intravenous sedation compared with the conventional oxygen supply.
Methods And Analysis: This study strictly adheres to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Protocol guidelines.
Inflamm Res
January 2025
Department of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, NC, USA.
Background: Mitochondria generate the adenosine triphosphate (ATP) necessary for eukaryotic cells, serving as their primary energy suppliers, and contribute to host defense by producing reactive oxygen species. In many critical illnesses, including sepsis, major trauma, and heatstroke, the vicious cycle between activated coagulation and inflammation results in tissue hypoxia-induced mitochondrial dysfunction, and impaired mitochondrial function contributes to thromboinflammation and cell death.
Methods: A computer-based online search was performed using the PubMed and Web of Science databases for published articles concerning sepsis, trauma, critical illnesses, cell death, mitochondria, inflammation, coagulopathy, and organ dysfunction.
J Adv Res
January 2025
College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China. Electronic address:
Introduction: Hypoxia, a condition characterized by inadequate oxygen supply to tissues, triggers various cellular responses, including apoptosis. The RNA demethylase FTO has been shown to exert anti-apoptotic effects, but its functions independent of RNA demethylase-particularly those involving protein-protein interactions-during hypoxia remain unclear.
Objectives: This study aimed to elucidate the cytoprotective mechanism of FTO in preventing apoptosis under hypoxic stress.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!