Raman scattering by pure water and seawater.

Appl Opt

College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331, USA.

Published: May 1998

Measurements of the magnitude and spectral distribution of the Raman-scattering coefficients of pure water (b(rw)) and seawater (b(rs)) are presented. Two independent measurements of the spectral distribution of the Raman-scattering coefficient of pure water were made for incident wavelengths ranging from 250 to 500 nm. These measurements revealed a strong dependence of b(rw) on wavelength that could be represented by a (lambda')(-5.3+/-0.3) relationship, where lambda' is the incident wavelength, or a lambda(-4.6+/-0.3) relationship, where lambda is the Raman-scattered wavelength, when normalized to units of photons. The corresponding relationships for normalization to energy are (lambda')(-5.5+/-0.4) and lambda(-4.8+/-0.3), respectively. These relationships are found to be consistent with resonance Raman theory for an absorption wavelength of 130 nm. The absolute value of b(rw) for the 3400-cm(-1) line was found to be (2.7 +/- 0.2) x 10(-4) m(-1) for an incident wavelength of 488 nm, which is consistent with a number of earlier reports. The difference between the magnitudes of the Raman-scattering coefficients for pure water and seawater was statistically insignificant.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.37.003324DOI Listing

Publication Analysis

Top Keywords

pure water
16
water seawater
8
spectral distribution
8
distribution raman-scattering
8
raman-scattering coefficients
8
coefficients pure
8
incident wavelength
8
wavelength
5
raman scattering
4
pure
4

Similar Publications

Background: Multivariate curve resolution methods are usually confronted with non-unique pure component factors. This rotational ambiguity can be represented by ranges of feasible profiles, which are equally compatible with the imposed constraints. Sensor-wise N-BANDS is an effective algorithm for the calculation of the bounds of feasible profiles in the presence of noise, but suffers from high computational cost.

View Article and Find Full Text PDF

A soluble fraction of faba bean protein was conjugated with tannic acid via the free-radical grafting method using a mixture of ascorbic acid and hydrogen peroxide. Surface plasmon resonance showed a strong bonding between them, while the free amino and thiol group measurements indicated tannic acid's bonding with the amino groups and cysteine residues on the proteins. Structural analysis using intrinsic fluorescence and surface hydrophobicity demonstrated tannic acid's interaction with the aromatic and hydrophobic amino acids of the protein.

View Article and Find Full Text PDF

Hydrate-based carbon capture and storage (HBCS) is a sustainable and promising approach to combating global warming by utilizing water, which is a ubiquitous resource. Here, we report a comprehensive study of CO hydrate formation in dry water (DW), a water-in-air dispersion confined in silica particles, for improving the kinetics of hydrate growth. Utilizing a combination of a home-built high-pressure reactor, in situ Raman spectroscopy, and powder X-ray diffraction (PXRD), we elucidate the crystal structure, growth dynamics, and morphology of CO hydrates formed in DW, with and without the kinetic hydrate promoter, l-tryptophan.

View Article and Find Full Text PDF

Permanent Nanobubbles in Water: Liquefied Hollow Carbon Spheres Break the Limiting Diffusion Current of Oxygen Reduction Reaction.

J Am Chem Soc

January 2025

Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, Tennessee 37996, United States.

Porous liquids have traditionally been designed with sterically hindered solvents. Alternatively, recent efforts rely on dispersing microporous frameworks in simpler solvents like water. Here we report a unique strategy to construct macroporous water by selectively incorporating hydrophilicity on the surfaces of hydrophobic hollow carbon spheres (HCS).

View Article and Find Full Text PDF

[Protective effect of tumor necrosis factor receptor-associated factor 6 inhibitor C25-140 on acute kidney injury induced by diquat poisoning in mice].

Zhonghua Wei Zhong Bing Ji Jiu Yi Xue

December 2024

Department of Emergency, Kweichow Moutai Hospital, Renhuai 564500, Guizhou, China. Corresponding author: Ou Renyang, Email:

Objective: To investigate the protective effect and mechanism of tumor necrosis factor receptor-associated factor 6 (TRAF6) inhibitor C25-140 on acute kidney injury (AKI) induced by acute diquat (DQ) poisoning in mice.

Methods: A total of 80 SPF grade healthy male C57BL/6 mice were randomly divided into the normal control group, DQ model group, C25-140 intervention group, and C25-140 control group, with 20 mice in each group. The DQ poisoning mouse model was established by using one-time intraperitoneal injection of 1 mL of 40 mg/kg DQ solution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!