Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We measured the attenuation coefficient of the National Oceanic and Atmospheric Administration lidar from a ship in the Southern California Bight in September 1995. The region from approximately 5 to 30 m in depth was covered. The laser was linearly polarized, and the receiver was operated with the same polarization and the orthogonal polarization. The measured values were between 0.08 and 0.12 m(-1) and were highly correlated with in situ measurements of the beam attenuation coefficient. Fluctuations of the lidar signal were found to be induced primarily by surface waves whose wavelengths are approximately three times the lidar spot size at the surface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ao.37.003105 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!