We present a method for the noninvasive determination of the size, position, and optical properties (absorption and reduced scattering coefficients) of tumors in the human breast. The tumor is first detected by frequency-domain optical mammography. It is then sized, located, and optically characterized by use of diffusion theory as amodel for the propagation of near-infrared light in breast tissue. Our method assumes that the tumor is a spherical inhomogeneity embedded in an otherwise homogeneous tissue. We report the results obtained on a 55-year-old patient with a papillary cancer in the right breast. We found that the tumor absorbs and scatters near-infrared light more strongly than the surrounding healthytissue. Our method has yielded a tumor diameter of 2.1 ? 0.2cm, which is comparable with the actual size of 1.6 cm, determined after surgery. From the tumor absorption coefficients at two wavelengths (690 and 825 nm), we calculated the total hemoglobin concentration (40 ? 10 muM) and saturation (71 ? 9%) of the tumor. These results can provide the clinical examiner with more detailed information about breast lesions detected by frequency-domain optical mammography, thereby enhancing its potential for specificity.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.37.001982DOI Listing

Publication Analysis

Top Keywords

size position
8
position optical
8
optical properties
8
breast tumor
8
detected frequency-domain
8
frequency-domain optical
8
optical mammography
8
near-infrared light
8
tumor
6
optical
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!