Polycyclic aromatic hydrocarbons (PAHs) enter the aquatic environment by various routes and are usually found as mixtures in the water. Many studies have shown that solar ultraviolet (UV) radiation can greatly enhance the toxicity of some PAHs to a variety of marine species. In the present study, we tested the phototoxicity of four PAHs with simple structures, both alone and in binary combinations, to a species of marine diatom, Phaeodactylum tricornutum, in the laboratory. The results indicated that simulated solar UV radiation not only enhanced the toxicity of the different PAHs to this alga, but also changed their relative toxic strengths. The photo-induced toxicity of PAHs to this alga might be a synergistic effect of photo-modification and photosensitization reactions, causing the microalgal cells to suffer oxidative stress. Four binary mixtures of these PAHs were found to have a synergistic joint action mode, while two binary mixtures displayed an antagonistic reaction, revealing a complex pattern of possible interactions of PAHs with marine diatoms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2007.12.019 | DOI Listing |
Int J Nanomedicine
January 2025
Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China.
Background: Melanoma is an aggressive form of skin cancer, and single-modality treatments often fail to prevent tumor recurrence and metastasis. Combination therapy has emerged as an effective approach to improve treatment outcomes.
Methods: In this study, we developed a multifunctional nanoplatform, MIL@DOX@ICG, utilizing MIL-101-NH(Fe) as a carrier to co-deliver the chemotherapeutic agent doxorubicin (DOX) and the photosensitizer indocyanine green (ICG).
J Hazard Mater
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Jianghan University, Wuhan 430056, China.
The extensive application of cement kiln industry results in substantial stack gas emissions, posing a potential risk of discharging organic pollutants. Cement industry is not considered as a primary contributor to persistent organic pollutants like polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs), owing to its extremely low emission factor. However, knowledge on the previously unrecognized chemicals that may possess higher emission factors from cement industry is lacking.
View Article and Find Full Text PDFBull Environ Contam Toxicol
January 2025
Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
Ciprofloxacin (CIP) and oxytetracycline (OTC) are commonly detected antibiotic species in breeding wastewater, and microalgae-based antibiotic treatment technology is an environmentally friendly and cost-effective method for its removal. This study evaluated the effects of CIP and OTC on Scenedesmus sp. in the breeding wastewater tailwater and the removal mechanisms of antibiotics.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, New Valley University, New Valley 72511, Egypt.
The present study aims to create spiro-N-(4-sulfamoyl-phenyl)-1,3,4-thiadiazole-2-carboxamide derivatives with anticancer activities. The in vitro anticancer evaluation showed that only the novel spiro-acenaphthylene tethered-[1,3,4]-thiadiazole (compound ) exhibited significant anticancer efficacy as a selective inhibitor of tumor-associated isoforms of carbonic anhydrase. Compound demonstrated considerable efficacy against the renal RXF393, colon HT29, and melanoma LOX IMVI cancer cell lines, with IC values of 7.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea.
Topoisomerase II inhibitors, particularly etoposide, have long been integral to the treatment of lung cancer, especially small cell lung cancer. This review comprehensively examines the mechanisms of action of etoposide, its clinical efficacy, and its role in current lung cancer treatment regimens. Etoposide exerts its anticancer effects by inducing DNA strand breaks through the inhibition of topoisomerase II, leading to cancer cell apoptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!