Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
RhoA, Rac1, and Cdc42, the founding members of the Rho subfamily of small GTPases, have been the focus of many research studies since the first discovery of their primary roles in the reorganisation of the actin cytoskeleton. Since then, it is clear that they are involved in a great deal of cellular functions, including cell migration and adhesion, cell growth control, and membrane trafficking. The complete sequencing of the human genome has now highlighted a total of 20 genes encoding Rho-like proteins. Little is known about their distinct cellular functions, however, numerous studies are now beginning to unravel that each of the Rho GTPase must play a specific role in the cell in a timely and spatially regulated fashion. Here, we are presenting a brief overview of the distinct functional roles and similarities known to date for each of the Rho members.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1051/medsci/2008242157 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!