Background: Endothelial progenitor cells (EPCs) derived from bone marrow may differentiate into endothelial cells and participate in endothelial repair. These cells can be mobilized into peripheral blood by cytokines, including granulocyte colony-stimulating factor (G-CSF). In the present study, we investigated the effects of G-CSF on neointimal formation and restenosis in a canine model of arterial balloon injury.
Methods: Sixteen male beagle dogs were injected subcutaneously with 20 microg x kg(-1) x d(-1) recombinant human G-CSF (n = 8) or normal saline (n = 8) for 1 week. On the fifth day of treatment, the dogs underwent renal arterial angioplasty. At 8 weeks after arterial balloon injury, angiographic observations were made and injured arteries were processed for morphometric analysis of neointimal formation.
Results: Peripheral white blood cell counts were increased by 3.34-fold compared to baseline on the fifth day of administration of G-CSF. Angiographies revealed that one stenosis had occurred among the eight injured renal arteries from dogs treated with G-CSF, whereas all injured renal arteries from dogs treated with normal saline remained patent. The mean extent of stenosis among injured arteries was 18.3% +/- 17.9% in the G-CSF treated group compared to 12.5% +/- 7.6% in the saline treated control group (P = 0.10). G-CSF treatment slightly increased neointimal thickness (0.42 +/- 0.15 mm vs 0.25 +/- 0.06 mm, P = 0.08) with an intima to media ratio of 0.83 +/- 0.49 vs 0.54 +/- 0.18 (P = 0.11).
Conclusions: G-CSF treatment does not attenuate neointimal hyperplasia and restenosis formation in a canine model of renal arterial injury, suggesting that the therapeutic strategy for preventing restenosis by stem cell mobilization should be investigated further.
Download full-text PDF |
Source |
---|
Cell Rep
January 2025
Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, Fujian, P.R. China; State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, P.R. China. Electronic address:
Menin is a scaffold protein encoded by the Men1 gene, and it interacts with a variety of chromatin regulators to activate or repress cellular processes. The potential importance of menin in immune regulation remains unclear. Here, we report that myeloid deletion of Men1 results in the development of spontaneous pulmonary alveolar proteinosis (PAP).
View Article and Find Full Text PDFStem Cells Dev
January 2025
Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
Autologous hematopoietic stem cell transplantation is used to restore bone marrow function after high-dose chemotherapy. For apheresis, granulocyte colony-stimulating factor (G-CSF) is standard of care, but obtaining sufficient stem cells can be challenging. Other mobilization agents include plerixafor and PEGylated G-CSF (PEG-G-CSF).
View Article and Find Full Text PDFLeuk Lymphoma
January 2025
Department of Internal Medicine, Division of Hematology, Mayo Clinic, Rochester, MN, USA.
Ann Transl Med
December 2024
Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
Background: Osteoarthritis (OA) is increasingly thought to be a multifactorial disease in which sustained gut inflammation serves as a continued source of inflammatory mediators driving degenerative processes at distant sites such as joints. The objective of this study was to use the equine model of naturally occurring obesity associated OA to compare the fecal microbiome in OA and health and correlate those findings to differential gene expression synovial fluid (SF) cells, circulating leukocytes and cytokine levels (plasma, SF) towards improved understanding of the interplay between microbiome and immune transcriptome in OA pathophysiology.
Methods: Feces, peripheral blood mononuclear cells (PBMCs), and SF cells were isolated from healthy skeletally mature horses (n=12; 6 males, 6 females) and those with OA (n=6, 2 females, 4 males).
Transl Cancer Res
December 2024
GI Cancer Center, Nanjing Tianyinshan Hospital, Nanjing, China.
Background: Mecapegfilgrastim, a long-acting granulocyte colony-stimulating factor, is approved in China for neutropenia prevention. However, data on its safety and efficacy in patients with head and neck cancer remain limited. This study aimed to evaluate the safety and efficacy of mecapegfilgrastim in preventing neutropenia among these patients undergoing chemotherapy, particularly those receiving chemoradiotherapy or chemoimmunotherapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!