Derivation of a new human embryonic stem cell line, endeavour-1, and its clonal propagation.

Stem Cells Dev

Stem Cell Laboratory, Faculty of Medicine, University of New South Wales, Randwick, Australia 2052.

Published: February 2008

Here we describe the derivation of a novel human embryonic stem (hES) cell line, Endeavour-1 (E1), its four new clonal lines (E1C1, E1C2, E1C3, E1C4), and their characterization. E1 and its clonal lines are propagated on human fetal fibroblasts (HFFs) derived and grown in a largely serum-free medium. Seven inner cell masses were isolated from 34 donated human embryos (27 survived), and one new hES cell line was obtained. E1 has been in culture for over 1 year and possesses all the typical features of stem cells, i.e., expression of stem cell surface markers (stage-specific embryonic antigens SSEA-3 and SSEA-4, and tumor recognition antigens TRA-1-60 and TRA-1-81), staining for alkaline phosphatase, and the presence of the pluripotent gene marker (nanog). This line shows pluripotency both under in vitro and in vivo conditions. E1 has a normal karyotype (46XX). Using our optimized procedure for cloning, four new clonal lines were derived from E1: E1C1, E1C2, E1C3, and E1C4. These clonal lines show normal characteristics: karyotype of that of the parent line (46XX) except for E1C3, which showed reciprocal translocation involving chromosomes 15 and 17; stem cell surface markers SSEA-4, TRA-1-60, and TRA-1-81; and gene expression for pluripotency (Nanog). All of these clonal lines formed embryoid bodies (EBs) in suspension cultures. After seeding, the EBs differentiated, forming cell lineages derived from all three germ layers as indicated by immunolocalization for the ectodermal marker beta-III tubulin, the mesodermal marker CD34, and the endodermal marker alpha-fetoprotein (AFP). There were subtle differences in the expression of these markers between clones. These clonal lines showed pluripotency in vivo. E1 and its clonal lines can differentiate to definitive endoderm after treatment with activin A, and, as indicated by expression of SOX17, FOXa2, and GATA-4 by RT-PCR, there are some subtle differences between these clonal lines. This may help in selecting clonal lines for specific lineage specification and for developing future cell therapy for various diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1089/scd.2007.0055DOI Listing

Publication Analysis

Top Keywords

clonal lines
36
stem cell
16
clonal
10
lines
9
human embryonic
8
embryonic stem
8
cell
8
cell endeavour-1
8
endeavour-1 clonal
8
e1c1 e1c2
8

Similar Publications

Multiple Myeloma (MM) is a hematologic malignancy caused by clonally expanded plasma cells that produce a monoclonal immunoglobulin (M-protein), a personalized biomarker. Recently, we developed an ultra-sensitive mass spectrometry method to quantify minimal residual disease (MS-MRD) by targeting unique M-protein peptides. Therapeutic antibodies (t-Abs), key in MM treatment, often lead to deep and long-lasting responses.

View Article and Find Full Text PDF

Multiple myeloma (MM) is a hematologic disease characterized by the clonal expansion of malignant plasma cells that accumulate in the bone marrow, leading to osteolytic bone disease, hypercalcemia, anemia, and renal dysfunction. Daratumumab was the first monoclonal anti-CD38 antibody approved for the treatment of MM, initially in relapse/refractory settings and, more recently, for newly diagnosed patients. Increased first-line usage of daratumumab will also substantially change treatment approaches for patients with relapsed/refractory disease.

View Article and Find Full Text PDF

Background: Despite promising preclinical studies, the application of DNA methyltransferase inhibitors in treating patients with solid cancers has thus far produced only modest outcomes. The presence of intratumoral heterogeneity in response to DNA methyltransferase inhibitors could significantly influence clinical efficacy, yet our understanding of the single-cell response to these drugs in solid tumors remains very limited.

Methods: In this study, we used cancer/testis antigen genes as a model for methylation-dependent gene expression to examine the activity of DNA methyltransferase inhibitors and their potential synergistic effect with histone deacetylase inhibitors at the single-cancer cell level.

View Article and Find Full Text PDF

Leveraging a phased pangenome for haplotype design of hybrid potato.

Nature

January 2025

National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.

The tetraploid genome and clonal propagation of the cultivated potato (Solanum tuberosum L.) dictate a slow, non-accumulative breeding mode of the most important tuber crop. Transitioning potato breeding to a seed-propagated hybrid system based on diploid inbred lines has the potential to greatly accelerate its improvement.

View Article and Find Full Text PDF

The implementation of site-specific integration (SSI) systems in Chinese hamster ovary (CHO) cells for the production of monoclonal antibodies (mAbs) can alleviate concerns associated with production instability and reduce cell line development timelines. SSI cell line performance is driven by the interaction between genomic integration location, clonal background, and the transgene expression cassette, requiring optimization of all three parameters to maximize productivity. Systematic comparison of these parameters has been hindered by SSI platforms involving low-throughput enrichment strategies, such as cell sorting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!