The inter- and intramolecular interactions that determine the experimentally observed binding mode of the ligand (2Z)-2-(benzoylamino)-3-[4-(2-bromophenoxy)phenyl]-2-propenoate in complex with hepatitis C virus NS5B polymerase have been studied using QM/MM calculations. DFT-based QM/MM optimizations were performed on a number of ligand conformers in the protein-ligand complex. Using these initial poses, our aim is 2-fold. First, we identify the minimum energy pose. Second, we dissect the energetic contributions to this pose using QM/MM methods. The study reveals the critical importance of internal energy for the proper energy ranking of the docked poses. Using this protocol, we successfully identified three poses that have low RMSD with respect to the crystallographic structure from among the top 20 initially docked poses. We show that the most important energetic component contributing to binding for this particular protein-ligand system is the conformational (i.e., QM internal) energy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp076885jDOI Listing

Publication Analysis

Top Keywords

internal energy
12
hepatitis virus
8
virus ns5b
8
ns5b polymerase
8
qm/mm calculations
8
docked poses
8
energy
5
qm/mm
4
polymerase qm/mm
4
calculations role
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!