Microparticles incorporating micrometer-sized diffractive bar codes have been modified with oligonucleotides and immunoglobulin Gs to enable DNA hybridization and immunoassays. The bar codes are manufactured using photolithography of a chemically functional commercial epoxy photoresist (SU-8). When attached by suitable linkers, immobilized probe molecules exhibit high affinity for analytes and fast reaction kinetics, allowing detection of single nucleotide differences in DNA sequences and multiplexed immunoassays in <45 min. Analysis of raw data from assays carried out on the diffractive microparticles indicates that the reproducibility and sensitivity approach those of commercial encoding platforms. Micrometer-sized particles, imprinted with several superimposed diffraction gratings, can encode many million unique codes. The high encoding capacity of this technology along with the applicability of the manufactured bar codes to multiplexed assays will allow accurate measurement of a wide variety of molecular interactions, leading to new opportunities in diverse areas of biotechnology such as genomics, proteomics, high-throughput screening, and medical diagnostics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac7018574 | DOI Listing |
BMC Med Educ
January 2025
Faculté des sciences infirmières, Université de Montréal, Succ. Centre-Ville, Montréal, C. P. 6128, H3C 3J7, Canada.
Background: Despite the importance of effective educational strategies to promote the transformation and articulation of clinical data while teaching and learning clinical reasoning, unanswered questions remain. Understanding how these cognitive operations can be observed and assessed is crucial, particularly considering the rapid growth of artificial intelligence and its integration into health education. A scoping review was conducted to map the literature regarding educational strategies to support transformation and articulation of clinical data, the learning tasks expected of students when exposed to these strategies and methods used to assess individuals' proficiency METHODS: Based on the Joanna Briggs Institute methodology, the authors searched 5 databases (CINAHL, MEDLINE, EMBASE, PsycINFO and Web of Science), ProQuest Dissertations & Theses electronic database and Google Scholar.
View Article and Find Full Text PDFJ Prev Alzheimers Dis
January 2025
Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, CA, United States.
Background: Investigators conducting clinical trials have an ethical, scientific, and regulatory obligation to protect the safety of trial participants. Traditionally, safety monitoring includes manual review and coding of adverse event data by expert clinicians.
Objectives: Our study explores the use of natural language processing (NLP) and artificial intelligence (AI) methods to streamline and standardize clinician coding of adverse event data in Alzheimer's disease (AD) clinical trials.
J Prev Alzheimers Dis
January 2025
Division of Neurogeriatrics, Department of Neurobiology Care Sciences and Society; Karolinska Institutet; Sweden; BioClinicum J9:20, Akademiska stråket, 171 64 Solna, Sweden.
Introduction: Informal care estimates for use in health-economic models are lacking. We aimed to estimate the association between informal care time and dementia symptoms across Europe.
Methods: A secondary analysis was performed on 13,529 observations in 5,369 persons from 9 European pooled cohort or trial studies in community-dwelling persons with dementia.
Environ Res
January 2025
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Shandong Huatai Paper Co. Ltd., Dongying 257335, China. Electronic address:
Wastewater treatment systems are essential for sustainable water resource management but face challenges such as equipment and sensor malfunctions, fluctuating influent conditions, and operational disturbances that compromise process stability and detection accuracy. To address these challenges, this paper systematically reviews data-driven fault detection and diagnosis (FDD) methods applied in wastewater treatment systems from 2014 to 2024, focusing on their applications, advancements, and limitations. Main contributions include an overview of key treatment processes, a detailed evaluation of fault types (process and sensor faults), advancements in multivariate statistical methods, machine learning (ML), and hybrid FDD techniques, as well as their effectiveness in anomaly detection, managing complex data distributions, and enabling real-time monitoring.
View Article and Find Full Text PDFNeuroimage
January 2025
Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA. Electronic address:
Noninvasive brain stimulation of the primary motor cortex has been shown to alter therapeutic outcomes in stroke and other neurological conditions, but the precise mechanisms remain poorly understood. Determining the impact of such neurostimulation on the neural processing supporting motor control is a critical step toward further harnessing its therapeutic potential in multiple neurological conditions affecting the motor system. Herein, we leverage the excellent spatio-temporal precision of magnetoencephalographic (MEG) imaging to identify the spectral, spatial, and temporal effects of high-definition transcranial direct current stimulation (HD-tDCS) on the neural responses supporting motor control.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!