A crystal structure showing an unusual trinuclear Cd(II) cluster bridged in mu3 fashion by a carbonate ligand is reported. The carbonate ion is formed by fixation of atmospheric carbon dioxide from the corresponding cadmium mononuclear complex containing an aza crown ether.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b711187hDOI Listing

Publication Analysis

Top Keywords

fixation atmospheric
8
atmospheric carbon
8
carbon dioxide
8
dioxide cadmiumii
4
cadmiumii macrocyclic
4
macrocyclic complex
4
complex crystal
4
crystal structure
4
structure showing
4
showing unusual
4

Similar Publications

A new-to-nature photosynthesis system enhances utilization of one-carbon substrates in Escherichia coli.

Nat Commun

January 2025

School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China.

Photosynthesis harvests solar energy to convert CO into chemicals, offering a potential solution to reduce atmospheric CO. However, integrating photosynthesis into non-photosynthetic microbes to utilize one-carbon substrates is challenging. Here, a photosynthesis system is reconstructed in E.

View Article and Find Full Text PDF

Enhanced cyanophycin accumulation in diazotrophic cyanobacterium through random mutagenesis and tailored selection under varying phosphorus availability.

Bioresour Technol

December 2024

Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel. Electronic address:

This study explored a sustainable alternative to the Haber-Bosch process by enhancing production of nitrogen-rich polymer cyanophycin (CGP) in the diazotrophic cyanobacterium Nostoc sp. PCC7120. Applying UV-mutagenesis followed by canavanine selection, we isolate an initial mutant with enhanced CGP accumulation.

View Article and Find Full Text PDF

Unlabelled: The rising atmospheric concentration of CO is a major concern to society due to its global warming potential. In soils, CO-fixing microorganisms are preventing some of the CO from entering the atmosphere. Yet, the controls of dark CO fixation are rarely studied .

View Article and Find Full Text PDF

Diazotrophic cyanobacteria can overcome nitrogen (N)-limitation by fixing atmospheric N; however, this increases their energetic, iron, molybdenum, and boron costs. It is unknown how current and historic N-supplies affect cyanobacterial elemental physiology beyond increasing demands for elements involved in N-fixation. Here, we examined the changes in pigment concentrations, N-storage, and the ionome (i.

View Article and Find Full Text PDF

Bacterial synergies amplify nitrogenase activity in diverse systems.

ISME Commun

January 2024

School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA 98195-2100, United States.

Endophytes are microbes living within plant tissue, with some having the capacity to fix atmospheric nitrogen in both a free-living state and within their plant host. They are part of a diverse microbial community whose interactions sometimes result in a more productive symbiosis with the host plant. Here, we report the co-isolation of diazotrophic endophytes with synergistic partners sourced from two separate nutrient-limited sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!