Novel biodegradable blend matrices for controlled drug release.

J Pharm Sci

Key Laboratory of Molecular Engineering of Polymers of Ministry of Education, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.

Published: October 2008

Phosphorylcholine-functionalized poly-epsilon-caprolactone (PC-PCL) is a new biodegradable polymer with good biocompatibility. In this study modulation of the controlled release of Ibuprofen (IB), a model drug, from poly-epsilon-caprolactone (PCL) by direct blending with PC-PCL is investigated. The influence of several factors such as the content of PC-PCL in the blend, drug loading and the molecular weight of PCL matrix upon the IB release is recognized. The release mechanism is discussed in terms of degradation/erosion profiles and hydrophilicity of the blend matrices. The IB release rate increased with the PC-PCL content because PC-PCL increased the hydrophilicity and biodegradability of the blends. Simultaneously, that release rate decreased with increase in the molecular weight of PCL in the blend. The drug loading in the blend also affected the release property of the matrix. Analysis of the release profiles following the power law indicated that the IB release was governed mainly by diffusion kinetics.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jps.21297DOI Listing

Publication Analysis

Top Keywords

release
9
blend matrices
8
content pc-pcl
8
blend drug
8
drug loading
8
molecular weight
8
weight pcl
8
release rate
8
blend
5
pc-pcl
5

Similar Publications

Mapping Trajectories of Gait Recovery in Clinical Stroke Rehabilitation.

Neurorehabil Neural Repair

January 2025

Department of Human Movement Science, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands.

Background: How gait changes during the early stages of stoke rehabilitation, and which patient characteristics are associated with these changes is still largely unknown.

Objective: he first objective was to describe the changes in gait during stroke rehabilitation. Secondly, we determined how various patient characteristics were associated with the rate of change of gait over time.

View Article and Find Full Text PDF

Deciphering key nano-bio interface descriptors to predict nanoparticle-induced lung fibrosis.

Part Fibre Toxicol

January 2025

State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical School, Soochow University, Suzhou, Jiangsu, 215123, China.

Background: The advancement of nanotechnology underscores the imperative need for establishing in silico predictive models to assess safety, particularly in the context of chronic respiratory afflictions such as lung fibrosis, a pathogenic transformation that is irreversible. While the compilation of predictive descriptors is pivotal for in silico model development, key features specifically tailored for predicting lung fibrosis remain elusive. This study aimed to uncover the essential predictive descriptors governing nanoparticle-induced pulmonary fibrosis.

View Article and Find Full Text PDF

The thrombolytic protease tissue plasminogen activator (tPA) is expressed in the CNS, where it regulates diverse functions including neuronal plasticity, neuroinflammation, and blood-brain-barrier integrity. However, its role in different brain regions such as the substantia nigra (SN) is largely unexplored. In this study, we characterize tPA expression, activity, and localization in the SN using a combination of retrograde tracing and β-galactosidase tPA reporter mice.

View Article and Find Full Text PDF

Background: Bok is a poorly characterized Bcl-2 protein family member with roles yet to be clearly defined. It is clear, however, that Bok binds strongly to inositol 1,4,5-trisphosphate (IP) receptors (IPRs), which govern the mobilization of Ca from the endoplasmic reticulum, a signaling pathway required for many cellular processes. Also known is that Bok has a highly conserved phosphorylation site for cAMP-dependent protein kinase at serine-8 (Ser-8).

View Article and Find Full Text PDF

Background: Environmental exposures such as airborne pollutant exposures and socio-economic indicators are increasingly recognized as important to consider when conducting clinical research using electronic health record (EHR) data or other sources of clinical data such as survey data. While numerous public sources of geospatial and spatiotemporal data are available to support such research, the data are challenging to work with due to inconsistencies in file formats and spatiotemporal resolutions, computational challenges with large file sizes, and a lack of tools for patient- or subject-level data integration.

Results: We developed FHIR PIT (HL7® Fast Healthcare Interoperability Resources Patient data Integration Tool) as an open-source, modular, data-integration software pipeline that consumes EHR data in FHIR® format and integrates the data at the level of the patient or subject with environmental exposures data of varying spatiotemporal resolutions and file formats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!