Objective: We investigated the pharmacokinetics of gemcitabine and its metabolite in two male patients (52 and 56-year-old) with advanced urothelial cancer receiving hemodialysis three times a week.

Methods: Gemcitabine, 1000 mg/m(2) in 100 ml of saline, was intravenously administered for 30 min. The concentration of gemcitabine and its metabolite 2',2'-difluorodeoxyuridine (dFdU) was measured at several given time points using a high-pressure liquid chromatography assay. Pharmacokinetic parameters were determined using the two-compartment modeling program.

Results: Gemcitabine was rapidly eliminated from plasma even in patients with renal dysfunction. No obvious differences in pharmacokinetic parameters such as the t(1/2), AUC and C(max) of gemcitabine were observed between the patients on hemodialysis and those with normal renal function in previous reports. On the other hand, dFdU showed a sustained level until hemodialysis was initiated. Hemodialysis could reduce the plasma dFdU level by approximately 50%.

Conclusions: According to the previous information, no dose modification of gemcitabine may be required for patients with renal impairment or hemodialysis. However, gemcitabine should be given with caution because only limited information is available, and the clinical effect of sustained and/or accumulated dFdU is unknown.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jjco/hym171DOI Listing

Publication Analysis

Top Keywords

gemcitabine metabolite
12
gemcitabine
8
concentration gemcitabine
8
advanced urothelial
8
urothelial cancer
8
pharmacokinetic parameters
8
patients renal
8
hemodialysis
6
dfdu
5
patients
5

Similar Publications

Research into the role of probiotics-often referred to as "living supplements"-in cancer therapy is still in its early stages, and uncertainties regarding their effectiveness remain. Relevantly, chemopreventive and therapeutic effects of probiotics have been determined. There is also substantial evidence supporting their potential in cancer treatment such as immunotherapy.

View Article and Find Full Text PDF

Background: The use of the bone-seeking properties of bisphosphonates (BPs) to target the delivery of therapeutic drugs is a promising approach for the treatment of bone metastases. Currently, the most advanced example of this approach is a gemcitabine-ibandronate conjugate (GEM-IB), where the bone-targeting BP ibandronate (IB) is covalently linked to the antineoplastic agent gemcitabine (GEM) via a spacer phosphate group. In the present study, we describe the development of a new analytical platform to evaluate the metabolism and pharmacokinetics of GEM-IB in mice and dogs and the results of proof-of-concept studies assessing the pharmacokinetics of GEM-IB in dogs and mice.

View Article and Find Full Text PDF

Metabolites in the Dance: Deciphering Gut-Microbiota-Mediated Metabolic Reprogramming of the Breast Tumor Microenvironment.

Cancers (Basel)

December 2024

Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Philipps University Marburg, Baldinger Str., 35043 Marburg, Germany.

Breast cancer (BC), a major cause of death among women worldwide, has traditionally been linked to genetic and environmental factors. However, emerging research highlights the gut microbiome's significant role in shaping BC development, progression, and treatment outcomes. This review explores the intricate relationship between the gut microbiota and the breast tumor microenvironment, emphasizing how these microbes influence immune responses, inflammation, and metabolic pathways.

View Article and Find Full Text PDF

Development and optimization of a high-throughput HPLC-MS/MS method for the simultaneous determination of Cedazuridine, Gemcitabine and its metabolite in mouse plasma.

J Chromatogr B Analyt Technol Biomed Life Sci

December 2024

Department of Pharmaceutical Analysis, Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China. Electronic address:

Article Synopsis
  • Gemcitabine (GEM) is widely used to treat solid tumors, but its effectiveness is limited by rapid metabolism into an inactive form (dFdU) by the enzyme cytidine deaminase (CDA), which decreases its oral bioavailability.
  • Cedazuridine (CDZ) has been identified as a potent inhibitor of CDA, and when combined with GEM, it may enhance GEM's oral bioavailability.
  • A study using HPLC-MS/MS confirmed that CDZ significantly improved GEM's bioavailability in mice by inhibiting its metabolism, suggesting potential benefits for clinical applications of the GEM-CDZ combination.
View Article and Find Full Text PDF

Aim: This study aimed to determine the maximum tolerated dose (MTD) of the urokinase plasminogen activator (uPA) inhibitor upamostat (LH011) in combination with gemcitabine for locally advanced unresectable or metastatic pancreatic cancer.

Method: Seventeen patients were enrolled and received escalating doses of oral LH011 (100, 200, 400, or 600 mg) daily alongside 1000 mg/m of gemcitabine. Safety profiles, tumor response (including response rate and progression-free survival), pharmacokinetics, and changes in CA199 and D-dimer levels were assessed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!